Can citizen science help stop mosquito-borne disease outbreaks?

Aedesaegypti_Westmead_Webb

Mosquito surveillance has been a critical component of how health authorities manage the risk of mosquito-borne disease. Data on the abundance and diversity of mosquitoes, together with activity of mosquito-borne pathogens, can guide decisions on when and how to apply mosquito control agents or issue public health warnings.

Almost every state and territory in Australia conducts seasonal mosquito surveillance. The exceptions are Tasmania and ACT, although both have had some limited investigations over the years. Even among those doing routine surveillance, the program structure varies but most include the collection of mosquitoes. This is how we can determine if it really is “the worst mosquito season ever”!

The programs are currently are working well in providing early warnings of outbreaks of mosquito-borne disease. These programs often include mosquito trapping undertaken by local governments and, occasionally, members of the public. For may years there has been a strong interest in citizen scientists undertaking mosquito sampling, particularly by some schools. The projects that I’ve been involved with have rarely got off the ground for various reasons. School holidays at the peak of mosquito season doesn’t help. Beyond that, the consumable costs of the traps we use, especially the dry-ice (carbon dioxide) used to bait the traps, can be a barrier to involvement. Dry-ice use in schools, and the associated health and safety issues, has been a cause for concern too. Finally, the fact that mosquitoes may be attracted to traps operated in school or community grounds and that these mosquitoes may be carrying disease-causing pathogens can often raise concerns.

As a result, there really haven’t been any major citizen science based mosquito surveillance programs until recently. Things are changing.

One reason local authorities are starting to turn their minds to a citizen science based approach is that the threat of exotic mosquitoes will require a shift in focus from the swamps to the suburbs. The mosquitoes that drive outbreaks of dengue, particularly Aedes aegypti and Aedes albopictus live in water-holding containers in backyards and populations are not as easily measured by traditional surveillance approaches. This is why there has been a much stronger engagement with the public in Far North QLD (a region where Aedes aegypti is present and causes occasional outbreaks of dengue) where health authorities are regularly visiting backyards looking for and controlling backyard mosquitoes

There are many reasons why citizen science is starting to come into play when it comes to mosquito surveillance more broadly. Technology is getting better (as highlighted by many smartphone apps) but also, some of the laboratory techniques are getting cheaper. This is a really critical issue.

A breakthrough in rapid testing of mosquitoes led to the development of an award winning initiative in Brisbane by Metro South Health and Queensland Health Forensic & Scientific Services. The Zika Mozzie Seeker project combines this new laboratory technique with DIY mosquito traps by the general public to help track exotic mosquitoes. In short, residents create their own mosquito trap out of a bucket or recycled plastic container, it is filled with water and placed in a yard with a small piece of paper hung inside. Mosquitoes then drop by to lay eggs on the paper. After a couple of weeks, the traps are collected and egg filled paper strips sent to the lab and tested to track the DNA of local and exotic mosquitoes. The project has been an amazing success with around 2,000 participants being involved in recent years (that adds up to about 150,000 mosquito eggs collected and tested). Luckily, no exotic mosquitoes have been detected.

But when it comes to citizen science based projects, perhaps it isn’t the mosquitoes collected (the backyard mosquito battles are fun to track though) but the awareness raised that is important. Awareness not only of the risks posed by mosquitoes, but what you can do about them through the safe and effective use of mosquito repellents and other personal protection measures. Engaging the public through citizen science may be the way to go. It doesn’t always work in reaching new audiences, as was discovered in a mosquito surveillance project in South Australia, but that doesn’t mean it won’t!

Perhaps the rise in new smartphone apps will help. There are a few out there, like the Globe Observer and Mosquito Alert. These, and other smartphone apps, deserve their own post (stay tuned). However, the significant initiative of recent years has been the Global Mosquito Alert project. Launched in May 2017, here is an extract from their media release:

The new initiative, launched under the name ‘Global Mosquito Alert’, brings together thousands of scientists and volunteers from around the world to track and control mosquito borne viruses, including Zika, yellow fever, chikungunya, dengue, malaria and the West Nile virus. It is the first global platform dedicated to citizen science techniques to tackle the monitoring of mosquito populations. The programme is expected to move forward as a collaboration involving the European, Australian and American Citizen Science Associations as well as the developing citizen science community in Southeast Asia.

With such momentum, it is an exciting time to consider the potential of citizen science in Australian mosquito surveillance programs. This is what i will be exploring in my presentation at the Australian Citizen Science Conference in Adelaide this week.

I’ll be presenting the paper on Wednesday 7 February 2018 in the “Empower with Data” session. The full abstract of our presentation is below:

The public as a partner in enhancing mosquito surveillance networks to protect public health

Craig Williams (1), Brian L. Montgomery (2), Phil Rocha (2), and Cameron Webb (3)

(1) University of South Australia, School of Pharmacy and Medical Sciences; (2) Metro South Public Health Unit, Queensland Health; (3) Medical Entomology, Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney

Mosquito-borne diseases are pervasive public health concerns on a global scale. Strategic management of risk requires well-designed surveillance programs, typically coordinated by local health authorities, for both endemic and exotic mosquitoes as well as the pathogens that they may transmit. There is great potential to utilise citizen science to expand the reach of current surveillance programs, particularly those centred on urban areas. There is increasing focus internationally on the role of citizen science in mosquito surveillance as evidenced by the establishment of the ‘Global Mosquito Alert’ project driven by multiple international stakeholders and citizen science associations. In Australia, new initiatives to engage the public in mosquito surveillance are emerging in multiple centres; utilizing a range of emerging field and laboratory technologies that remove previously existing barriers to community involvement. In South Australia, citizen science entomology programs have been trialed, and mosquito trapping and identification technology to expand existing trapping networks has been assessed. In suburban South-East Queensland, Zika Mozzie Seeker is linking citizen scientists into a network by using new laboratory techniques to rapidly screen for Ae. aegypti DNA in large numbers of eggs collected from DIY ovitraps,. In NSW, citizen science is being used to promote biodiversity and delineate pest and non-pest activity of mosquitoes associated with urban wetlands and surrounding suburbs. Citizen science holds great potential for public engagement activities as well as serving to enhance existing surveillance operations.

 

Join the conversation on Twitter by following Dr Cameron Webb, A/Prof Craig Williams and keep an eye on the meeting via the hashtag

Advertisements

Ross River virus in Melbourne, how did that happen?

aedesnotoscriptus

Health authorities in Victoria have been warning of mosquito-borne Ross River virus for much of the summer. The state is experiencing one of its worst outbreaks of the disease but cases have mostly been across inland regions. Now it’s hit Melbourne. How has this happened?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. There are usually about 5,000 cases across Australia. However, in 2015 there was a major spike in activity with around 9,000 cases reported. It is a common misconception that the disease is only found in northern regions of Australia. I’m often told “I heard the disease is moving south from QLD?” That’s not the case.

The virus is just as much a natural part of the Australian environment as the mosquitoes and the wildlife that maintain transmission cycles.

While there are generally more cases in northern Australia, nowhere is safe. Some of the largest outbreaks have occurred in southern regions of Western Australia, South Australia, Victoria and even Tasmania.

The virus is widespread but is generally associated with rural regions. A driving factor in determining the activity of Ross River virus is that more than just mosquitoes are involved in outbreaks. The virus is maintained in the environment in native wildlife, especially kangaroos and wallabies. Even when and where there are high numbers of mosquitoes, without wildlife, outbreak risk is low. This is the reason why any clusters of locally infected cases in metropolitan regions are typical in areas where there are wetlands, wildlife and mosquitoes occurring together. We’ve seen this on the urban fringe of Sydney and Perth in recent years.

The announcement of locally acquired cases in the suburbs of Frankston and Casey, in Melbourne’s south-east, has taken many by surprise. Should it have?

Victoria is no stranger to mosquitoes and outbreaks of mosquito-borne disease. There are mosquito surveillance and mosquito control programs in place in many regions and historically there have been major outbreaks of mosquito-borne disease. From freshwater flood plains of the inland to the tidally flooded estuarine wetlands of the coast, Victoria has diverse and often abundant mosquitoes. But cases in the metropolitan region are rare.

Victorian mosquitoes are not all bad but over a dozen different mosquito species can spread Ross River virus.

The region where these cases have been identified are in proximity to bushland and wetland areas. There is no doubt plenty of mosquitoes and suitable wildlife too. While this is the first time local transmission has been documented, that doesn’t mean the virus hasn’t circulated in the past, or even that cases may have occurred.

For individuals infected but only suffering mild symptoms, the illness can be easily discounted as nothing more than a mild case of the flu. Without appropriate blood tests, these cases never appear in official statistics. For this reason, many mosquito researchers believe that the number of notified cases across the country is just the tip of the iceberg with many milder infections going diagnosed.

But why in Melbourne now?

It is difficult to know for sure. The two most likely explanations are that either environmental conditions were ideal for mosquitoes and suitable populations of wildlife were present so that the virus was much more active in the local environment than previously. The second explanation is that the virus may have been introduced to the region by a traveller or movement of wildlife. In much the same way Zika virus made its way from SE Asia to South America in the last few years, mosquito-borne viruses move about in people and animals, much less so than mosquitoes themselves (but that isn’t impossible either).

Victoria (as well as inland NSW) is experiencing one of its largest outbreaks of Ross River virus on record following significant flooding of inland regions. With so much activity of the virus in the region, perhaps an infected bird or person travelling to the metropolitan region brought the virus with them. When bitten by local mosquitoes, the virus started circulated among local mosquitoes and wildlife.

Most people infected by Ross River virus are bitten by a mosquito that has previously fed on a kangaroo or wallaby.

Once it’s made its way to metropolitan regions, the virus can be spread from person to person by mosquitoes. Common backyard mosquitoes, especially Aedes notoscriptus, can transmit the virus but as these mosquitoes are not particularly abundant, don’t fly vary far and will just as likely bite animals as humans, they’re unlikely to drive major urban outbreaks of the disease. This mosquito doesn’t pack the same virus-spreading-punch as mosquitoes such as Aedes aegypti that spreads dengue, chikungunya and Zika viruses. Aedes aegypti isn’t in Victoria.

We’re unlikely to see significant spread of Ross River virus across Melbourne but that doesn’t mean Victorians should be complacent. As there is no cure for Ross River virus disease, the best approach is to avoid being infected in the first place. Preventing mosquito bites is the best approach. For my tips and tricks on avoiding mosquito bites see this recent paper in Public Health Research and Practice as well as my article for The Conversation.

Keep an eye on the website of Victoria Health for more information.

 

 

 

 

 

West Aussies versus the local mozzies

This is a special guest post from Dr Abbey Potter, Senior Scientific Officer, Environmental Health Hazards, WA Health. I’m currently mentoring Abbey as part of The Public Health Advocacy Institute of WA (PHAIWA) Mentoring Program. Its been a great experience as we navigate through some of the strategies to raise awareness of mosquito-borne disease and advocate for better approaches to addressing the public health risks associated with mosquitoes.

fightthebite_wahealth_flyer

Living in WA, we’re all too familiar with the pesky mosquito. We know they bite but what we often don’t consider is that they can transmit serious and sometimes deadly diseases. In fact, a recent survey of locals indicated that knowledge of mosquito-borne disease is pretty limited, particularly among younger adults aged 18-34 years and those living in the Perth Metro. It’s pretty important we’re aware of the risks posed by these pint-sized blood suckers and how you can avoid them… and here’s why!

The Facts

On average, more than 1,000 people will be infected with a mosquito-borne disease in WA every year. Our mossies can transmit Ross River virus, Barmah Forest virus, West Nile virus (Kunjin substrain) and Murray Valley encephalitis virus. All four cause diseases that are debilitating at best, causing weeks to months of symptoms. Murray Valley encephalitis is limited to the north of the State but is so serious it can result in seizures, coma, brain damage and even death.

Forget the bush, most people bitten in their own backyard. West Aussies are all very prone to getting eaten alive while socialising outdoors but if you’re up in the north of the State, you’ve also got a much higher likelihood of being bitten while boating, camping or fishing or working outside, compared to the rest of the state.

And don’t think you’re off the hook when you head off on holidays. A further 500 WA residents return from overseas travel with an exotic mosquito-borne disease every year. Heading to Bali? Beware of dengue, especially young adult males who return home with the illness more than others. There is limited mosquito management in many overseas countries where disease-transmitting mozzies can bite aggressively both indoors and throughout the day. This catches West Aussies off guard, as we are accustomed to mozzies biting outdoors, around dusk and dawn. When you’re in holiday mode it’s likely that you’ll be relaxing, having a couple of drinks and not thinking about applying repellent. Oddly enough, mosquitoes may actually be more attracted to people whose body temperature is higher. This happens naturally when you consume alcohol, so best pull out the repellent before you crack your first beer.

Despite our attractiveness to mosquitoes, we aren’t really aware of the most effective ways to avoid bites or how we can do our bit to reduce breeding in our own backyards. If you live by the mantra Cover Up. Repel. Clean Up you’ll have no problems!

mandurah_sep2014

Western Australia has some amazingly beautiful wetlands but these saltmarshes around Mandurah can produce large populations of nuisance-biting mosquitoes!

Cover Up

If you know you are going to be outdoors when mosquitoes are active, wear loose, long-fitting clothing that is light in colour. Believe it or not, mosquitoes can bite through tight pants as tough as jeans – I’ve witnessed it!

If you’re staying in accommodation that isn’t mosquito-proof, consider bed netting.

Try to keep children indoors when mosquitoes are most active. If exposure can’t be avoided, dress them appropriately and cover their feet with socks and shoes. Pram netting can also be really useful.

Admittedly, it’s not always practical to wear long sleeves during our warm summer nights, so there are going to be times when you need to use repellent. Choose a product that actually works and apply it appropriately so it does the job. Despite our best intentions, this is where we often go wrong. There are a few basic things to cover here, so stick with it!

Ingredient: Science tells us that the best active ingredient for repelling mosquitoes is diethyltoluamide (DEET for short) or picaridin. You need to look for either one of these names on the repellent label under the ‘active constituents’ section.

Unfortunately, natural repellents and anything wearable (e.g. bands, bracelets or patches) have very limited efficacy. Experts don’t recommend you use them and I consider this very wise advice. It only takes a single mosquito bite to become infected and chances are you will receive at least one if you rely solely on a product of this nature. It just isn’t worth the risk.

mosquito_repellent_wristband_october2015

Percentage: The next thing to consider is the percentage of the active ingredient. This can range anywhere from 7% to 80% which can make choosing a repellent confusing. Just remember, the higher the percentage, the LONGER the product will remain active for. It doesn’t mean it will repel mosquitoes better.

A repellent containing 16-20% DEET will provide around 4-6 hours of protection, and is a good place to start. Repellents labelled ‘tropical strength’ usually contain greater than 20% DEET – they are useful when you spend longer periods exposed to mosquitoes or if you are heading to a region where dengue, malaria or Zika is problematic. Kids repellents usually contain picaridin or <10% DEET.

Sometimes it can be tricky to work out the percentage of the active ingredient. You can see the Bushmans example below states this clearly, but the other bottles list the ingredient in grams per litre (g/L). No need for complex maths – just divide by 10 and you have the magic number! For example, the RID label below reports the product contains 160g/L of DEET. This would convert to 16% DEET – easy!

You can see a few examples here of effective repellents:

repellents_potterpaper

How to Apply: No doubt we would all prefer if repellents didn’t feel quite so gross on our skin or didn’t smell so bad. Even I have to admit that before I moved into this field, I was guilty of putting just a dab here and a dab there. Unfortunately, this is flawed logic that will only result in you being bitten!

Repellents must be applied correctly to be effective. That means reading the label and applying it evenly to all areas of exposed skin. Remember to reapply the product if you are exposed to mosquitoes for longer than the repellent protects you for. You’ll also have to reapply the repellent after sweaty activity or swimming.

For more information on repellent use in adults and children, click here.

Clean Up

Mosquitoes need water to breed, but only a very small amount. Water commonly collects in a range of things you may find in your backyard including pot plant drip trays, toys, old tyres, trailers and clogged up gutters. Mosquitoes also love breeding in pet water bowls, bird baths and pools if the water is not changed weekly or they are not well maintained. Rain water tanks can also be problematic so place some insect proof meshing over any outlets. When you’re holidaying, cover up or remove anything that may collect water.

**

If you need more official info from WA Health about mosquito-borne disease or simple ways to prevent being bitten click here. And if you want to read more about how much West Aussies know (or don’t know) about mossies, check out Abbey’s excellent paper here! Joint the conversation too on Twitter by following Abbey and Cameron.

Social media and blood suckers showcased at the International Congress of Entomology

instagram_wetlands_webb

Digital technology is changing a lot about how we undertake entomological research and communicate the results of that research to the community and policy makers.

This week in Orlando, Florida, is the International Congress of Entomology (ICE). A huge gathering of entomologists from around the world. While it was a great pleasure to be invited to participate, I couldn’t get over there this time.

I will, however, have a chance to present my work in the Symposium “Entomology in the Digital Age”  Friday, September 30, 2016 (01:30 PM – 04:45 PM), Convention Centre Room W222 A.

In the presentation I’ll share some of the reasoning behind my use of social media to engage the community with both entomological research and public health communication. Most importantly, it will focus on some of the metrics I’ve recorded alongside my use of social media, maintaining a blog of research and writing for outlets such as The Conversation.

I’ve written about my use of social media and how it can help extend the reach of public health messages and presented on the topic alongside a range of great speakers at the 2014 Entomological Society of America meeting in Portland.

This time around, technology is playing an even more direct role in my presentation! I’ve pre-recorded my presentation and it will be shown to the audience on the day among other presentations. I’ll also be checking into the session to answer questions. Despite the fact I’ll need to be up around 1:30am due to time differences, it should be fun.

See the abstract below…

Taking entomological research from the swamps to the suburbs with social media

Cameron E Webb

Connecting scientists and the community is critical. This is particularly the case for medical entomologists working in the field of mosquito-borne disease where the translation of entomological research into improved public health outcomes is a priority. While traditional media has been the mainstay of public health communications by local authorities, social media provides new avenues for disseminating information and engaging with the wider community. This presentation will share some insights into how the use of social media has connected new and old communications strategies to not only extend the reach of public health messages but also provide an opportunity to promote entomological research and wetland conservation. A range of social media platforms, including Twitter, Instagram, and WordPress, were employed to disseminate public health messages and engage the community and traditional media outlets. Engagement with the accounts of traditional media (e.g. radio, print, television, online) was found to be the main route to increased exposure and, subsequently, to increased access of public health information online. With the increasing accessibility of the community to online resources via smartphones, researchers and public health advocates must develop strategies to effectively use social media. Many people now turn to social media as a source of news and information and those in the field of public health, as well as entomological research more generally, must take advantage of these new opportunities. doi: 10.1603/ICE.2016.94611


If you’re at ICE, you can also catch up with my PhD student David Lilly who’ll be presenting our research into the development of insecticide resistance in bed bugs as part of the symposium “New Insights into Biology, Resistance Mechanisms, and the Management of the Modern Bed Bug” Friday, September 30, 2016, 01:30 PM – 04:45 PM, Convention Center, West Hall F4 (WF4).

Novel insecticide resistant mechanisms in the common bed bug, Cimex lectularius

David Lilly, Cameron E Webb and Stephen Doggett

Introduction: Research on field strains of Cimex lectularius from Australia has identified widespread resistance to pyrethroid insecticides, but variability in the magnitude expressed. To determine if differences in resistance mechanisms exist, collected strains were examined for the presence of metabolic detoxification and/or cuticle thickening. Methods: The presence and relative contribution of detoxifying esterases or cytochrome P450 monooxygenases were assessed. Bed bugs collected from Parramatta (NSW), Melbourne (VIC) – 2 strains, ‘No.2’ and ‘No.4’, and Alice Springs (NT) were exposed in topical bioassays employing deltamethrin and two pyrethroid synergists: piperonyl butoxide (PBO) and EN16/5-1. PBO inhibits both monooxygenases and esterases, whereas EN16/5-1 will inhibit esterases only. Thus in a comparative bioassay, the results can infer the dominant enzyme system. The Parramatta strain was then selected to study the potential presence of cuticle thickening. Nine-day-old male bed bugs were exposed to filter papers treated with the highest label rate of Demand Insecticide®(200mL/10L of 25g/L lambda-cyhalothrin) and were grouped according to time-to-knockdown (< 2 hours, ≥ 4 hours, and survivors at 24 hours). Measurements of mean cuticle thickness at the transverse midpoint of the second leg tarsus were taken under electron microscope. Results/Conclusion: All strains possessed resistance that was inhibited by the synergists, with the Parramatta and Melbourne No.2 indicating esterase-dominance, and Alice Springs and Melbourne No.4 indicating cytochrome P450 monooxygenase-dominance. Cuticular measurements demonstrated that bed bugs surviving deltamethrin exposure had significantly thicker cuticles, denoting a novel form of resistance in these insects. doi: 10.1603/ICE.2016.92553

 

You can also see Stephen Doggett (co-author and photographer of A Guide to Mosquitoes of Australia) speaking on photographing mosquitoes to in the symposium “Insect Photography Symposium: Bringing the Small to the World.


You can join the conversation on Twitter and keep an eye on all the fun in Orlando by keeping an eye on the tweet stream!

 

Taking Australian wetland research to China

jayne_mosquitotrap

My PhD student Jayne Hanford has been super busy this year. Not much more than a year into her candidature and she has already locked away a summer of research and has been presenting her findings at conferences here in Australia as well as overseas.

After recently sharing our research at the Society for Wetland Scientists Annual Conference held in Corpus Christi, Texas, USA and the Mosquito Control Association of Australia conference on the Gold Coast, Jayne is off to China for the 10th INTECOL International Wetlands Conference.

Her research is focused on understanding the links between wetland vegetation, aquatic biodiversity and mosquito populations. Better understanding of these links will assist management strategies that minimise actual and potential pest and public health risks associated with mosquitoes and urban wetlands.

Our abstract for the conference is below:

Is the Biodiversity Value of Constructed Wetlands Linked to their Potential Mosquito-Related Public Health Risks?

Jayne Hanford1, Cameron Webb2, Dieter Hochuli1

1School of Life and Environmental Sciences, The University of Sydney, Australia; 2Department of Medical Entomology, Westmead Hospital and The University of Sydney, Westmead, Australia

 Stormwater treatment wetlands constructed in cities can enhance the sustainability of urban biodiversity by providing wildlife refuge areas and habitat connectivity. However, the creation of wetlands for stormwater infrastructure can increase risks to public health and wellbeing by proliferating nuisance-biting and pathogen-transmitting mosquitoes. In severe cases, this proliferation can erode goodwill in the community for creating and protecting valuable wetland systems.  We compared mosquito assemblages at 24 natural and constructed urban wetlands in the greater Sydney region, Australia. Our aim was to determine if stormwater wetlands constructed with the goal to support high biodiversity value also had reduced associated mosquito risks. Wetlands were located across a gradient of urbanisation determined by surrounding human population density, and included sites with different aquatic and riparian habitat complexity and availability. Adult and larval mosquitoes and aquatic macroinvertebrates were sampled on two occasions through summer and autumn. Aquatic macroinvertebrates were used to derive health indices, as well as being a relative measure of aquatic diversity.  Diversity of adult mosquito species was high, and abundance varied greatly between wetlands. Macroinvertebrate assemblages were also highly variable between sites. Wetlands with greater habitat complexity had lower adult mosquito abundance and greater mosquito species diversity, compared to stormwater-specific wetlands with minimal available habitat. As expected, mosquito assemblages did not respond to urbanisation and aquatic macroinvertebrate assemblages per se, but appeared to respond to a complex suite of coarse and fine-scale features that may affect a wetland’s biodiversity value.  Effectively integrating wetlands into cities requires balancing their design for water infrastructure purposes, biodiversity resources and public health and wellbeing requirements. Understanding the risks as well as the benefits will enhance the value of constructed urban wetlands in sustainable cities while minimising public health risks posed by mosquitoes.

Jayne will be speaking in the “The next generation of wetland science: ecosystems, applications, and engineering” session in the Nanhu Room 1520-1530 on Wednesday 21 September.

You can keep an eye on whats happening in China by following Jayne on Twitter and checking the hashtag

westernsydneywetlands

The Society for Wetland Scientists Annual Conference held in Corpus Christi, Texas, USA back in May included a paper by Jayne titled “Risky Wetlands? Conflicts between biodiversity value and public health” and prompted some great feedback and discussion among wetland scientists at the meeting. It was a successful trip and a timely reminder that I must get to one of the SWS meetings sometime soon, perhaps Puerto Rico?

Keep an eye out for Jayne’s research publications soon!

 

 

 

Mosquitoes, Gold Coast and the latest arbovirus research

img_1844

This week I’ve been on the Gold Coast for the 12th Mosquito Control Association of Australia and Arbovirus Research in Australia Symposium. The theme of the meeting was “Managing challenges and threats with new technology” and included presentations covering a range of topics, from remote piloted aircraft for mosquito control to the discovery of insect-specific viruses and their potential to stop outbreaks of mosquito-borne disease.

You can check out some of the tweets shared during the meeting here.

I found myself on ten papers presented at the meeting and I’ve provided the abstracts below!


Does surrounding land use influence the mosquito populations of urban mangroves?

Suzi B. Claflin1 and Cameron E. Webb2,3

1Department of Entomology, Cornell University, Ithaca, NY, USA; 2Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW; 3Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, NSW 2145, Australia

Mosquitoes associated with mangrove habitats pose a pest and public health risk. These habitats in urban environments are also threatened by urbanisation and climate change. As a consequence, urban mangrove management must strike a balance between environmental conservation and minimising public health risks. Land use may play a key role in shaping the mosquito community within urban mangroves through either species spillover or altering the abundance of mosquitoes associated with the mangrove. In this study, we explore the impact of land use within 500m of urban mangroves on the abundance and diversity of adult mosquito populations. Carbon dioxide baited traps were used to sample host-seeking female mosquitoes around nine mangrove forest sites along the Parramatta River, Sydney, Australia. Specimens were identified to species and for each site, mosquito species abundance, species richness and diversity were calculated and were analyzed in linear mixed effects models. We found that the percentage of residential land and bushland in the surrounding area had a negative effect on mosquito abundance and species richness. Conversely, the amount of mangrove had a significant positive effect on mosquito abundance, and the amount of industrial land had a significant positive effect on species richness. These results demonstrate the need for site-specific investigations of mosquito communities to assist local authorities develop policies for urban development and wetland rehabilitation.


Do urban wetlands increase mosquito-related public health risks?

Jayne K. Hanford1, Cameron E. Webb2,3, Dieter F. Hochuli1

1 School of Life and Environmental Sciences, The University of Sydney, Sydney; 2 Medical Entomology, NSW Health Pathology, Level 3 ICPMR, Westmead Hospital, Westmead; 3Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney

Wetlands in urban areas are frequently constructed or rehabilitated to improve stormwater quality and downstream aquatic health. In addition to improving water quality, these wetlands can provide aesthetic, recreational and biodiversity values to communities. However, urban wetlands are often perceived to proliferate nuisance-biting and pathogen-transmitting mosquitoes which can, in severe cases, erode goodwill in the community for protecting these valuable ecosystems.  We compared mosquito assemblages at 24 natural and constructed wetlands in the greater Sydney region, Australia. Our aims were to determine if wetlands with high aquatic biodiversity posed reduced mosquito-related public health risks, and if these links vary across the urban-rural gradient. At each wetland we sampled adult and larval mosquitoes, aquatic macroinvertebrates and physical habitat variables on two occasions through summer and autumn.  Although larval mosquito abundance was low across all sites, there was a high diversity of adult mosquito species, and assemblages varied greatly between sites and seasons. Species of wetland-inhabiting mosquitoes showed vastly different responses to aquatic biodiversity and physical habitat variables. There were strong relationships between the abundance of some mosquito species and aquatic macroinvertebrate richness, while others mosquito species showed strong relationships with the percentage of urbanisation surrounding the wetland.  Effectively integrating wetlands into cities requires balancing wetland design for water infrastructure purposes, biodiversity resources and public health and wellbeing requirements. Understanding relationships between biodiversity value and mosquito-related public health risks will enhance the value of constructed urban wetlands in cities while minimising risks posed by mosquitoes.


Aedes aegypti at Sydney Airport; the detections and response

Doggett, S.L. and Webb C.E

Department of Medical Entomology, CIDMLS, Pathology West, ICPMR,
Westmead Hospital, Westmead, NSW.

Despite a huge increase in the detections of exotic vectors at ports around Australia, up until 2016 there had been no detection of Aedes aegypti at the Sydney International Airport. However, this changed on 14/Jan/2016 when two larvae were observed in an ovitrap serviced by the Department of Agriculture and Water Resources (formerly AQIS), as part of their routine surveillance activities for the detection of exotic vectors. These larvae were confirmed as being Ae. aegypti. Thereafter, there were a further nine separate detections of Ae. aegypti up until 4/Mar/2016. Six were via BG traps, one in an ovitrap, and there were two separate instances of an adult mosquito being collected in open areas. The majority of detections occurred in areas of the airport known as the ‘basement areas’. This is where the bags are unloaded from the air cans onto convey belts for collection directly upstairs by the passengers. Response measures undertaken included: (1) enhanced surveillance; BG traps were increased in number from 2 to 12, and traps inspected at more frequent intervals; (2) insecticide treatments; thermal fogging and surface sprays were conducted of the relevant areas; (3) vector surveys; a comprehensive audit of the airport was undertaken to examine the potential for localized mosquito breeding. In the case of the vector surveys, some 107 potential sites were identified and grouped into risk categories. No Ae. aegypti were discovered breeding, although Cx. quinquefasciatus and Ae. notoscriptus were found, and recommendations to prevent future localized breeding were made.


Communicating the risks of local and exotic mosquito-borne disease threats to the community through social and traditional media

Cameron E Webb1,2

1Department of Medical Entomology, NSW Health Pathology, Level 3, ICPMR, Westmead Hospital, WESTMEAD NSW 2145 AUSTRALIA; 2Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, AUSTRALIA

Mosquito-borne disease management in Australia faces challenges on many fronts. Many gaps exist in our understanding of the drivers of exotic and endemic mosquito-borne disease risk but also the pathways to ensuring the community embrace personal protection measures to avoid mosquito bites. While traditional media has been the mainstay of public health communications by local authorities, social media provides a new avenues for disseminating information and engaging with the wider community. This presentation will share some insights into how the use of social media has connected new and old communications strategies to not only extend the reach of public health messages but also provide an opportunity to promote entomological research and wetland conservation. A range of social media platforms, including Twitter, Instagram and WordPress, were employed to disseminate public health messages and engage the community and traditional media outlets. Engagement with the accounts of traditional media (e.g. radio, print, television, online) was found to be the main route to increased exposure and, subsequently, to increased access of public health information online. With the increasing accessibility of the community to online resources via smartphones, researchers and public health advocates must develop strategies to effectively use social media. Many people now turn to social media as a source of news and information and those in the field of public health, as well as entomological research more generally, must take advantage of these new opportunities.

See the slides here.


So, you want to write a field guide?

Cameron E. Webb1,2, Stephen L. Doggett1 and Richard C. Russell2

1Department of Medical Entomology, NSW Health Pathology, Level 3, ICPMR, Westmead Hospital, WESTMEAD NSW 2145 AUSTRALIA; 2Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, AUSTRALIA

We know a lot about Australian mosquitoes. They’re one of the most studied insects in the country. Their pest and public health threats warrant a better understanding of their biology and ecology. There is still plenty we don’t know. We may not understand their ecological role in the local environment very well and there are many mosquitoes we know exist but have very little information about them. We still need to give many mosquitoes a formal scientific name. There is a reason why so many field guides are written by retired scientists. It’s not just about expertise, it’s about time too! In early 2016, “A Guide to Mosquitoes of Australia” to was published by CSIRO Publishing and marked the culmination of many years work. This work involved chasing mosquitoes from coastal rock pools to snow melt streams. We carried eskies of buzzing mosquitoes on airplanes from northern Australia to laboratories in Western Sydney and there were many late nights of wrangling those mosquitoes to get the perfect photo. Lots of mosquito bites too. Many, many mosquito bites. Putting together this field guide wasn’t an easy task and for all those involved it proved a challenge in many different ways. Digging out old papers to colour-correcting digital photographs proved time consuming but the biggest delays in finishing this project was a problem that plagues many field guide writer, “species creep”! Completing the guide was only possible with the kindness, generosity and co-operation of many mosquito researchers around the country.

See the slides here.


Arbovirus and vector surveillance in NSW, 2014/15-2015/16

 Doggett, S.L., Clancy, J., Haniotis, J., Webb C. and Toi, C.

Department of Medical Entomology, CIDMLS, Pathology West, ICPMR,
Westmead Hospital, Westmead, NSW.

The NSW Arbovirus Surveillance and Vector Monitoring Program acts as an early warning system for arbovirus activity. This is achieved through the monitoring of mosquito abundance, detection of arboviruses from mosquitoes, and the testing for seroconversions to MVEV and KUNV in sentinel chickens. A summary of the last two seasons will be presented. The 2014-2015 season started early with elevated temperatures through late 2014, however conditions were relative dry with neither Forbes’ nor the Nicholls’ hypothesis being suggestive of an MVEV epidemic. Despite this, for the inland region, human notifications were close to average, with 260RRV & 11BFV). There were 12 arboviral detections from the inland including 5BFV, 6RRV & 1STR, with no seroconversions. In contrast, the coastal strip experienced the largest epidemic of RRV in recorded history. The 1,225 cases were close to double the average, with much of the activity occurring in the far north coast. There were 41 isolates from the mosquitoes trapped along the coast and included 6BFV, 29RRV, 4EHV and 2STRV. An intense El Niño occurred during the 2015-2016 season and thus it was extremely dry across the state. Again the Forbes’ and the Nicholls’ hypothesis were not suggestive of an MVEV outbreak. For the inland, mosquito numbers were well below average and there were only two arboviral detections from the mosquitoes (1RRV & 1 BFV), with no seroconversions. Similarly, mosquito collections were below average and there were also two arboviral detections from the trapped mosquitoes (1BFV & 1EHV). Human cases were below average.


Are remote piloted aircraft the future of mosquito control in urban wetlands?

Cameron E Webb1,2 Stephen L. Doggett1 and Swapan Paul3

1Department of Medical Entomology, NSW Health Pathology, Level 3, ICPMR, Westmead Hospital, WESTMEAD NSW 2145 AUSTRALIA; 2Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, AUSTRALIA; 3Sydney Olympic Park Authority, 8 Australia Ave, Sydney Olympic Park NSW 2127, AUSTRALIA

Mosquito control in urban wetlands will become increasing important. The expansion of residential areas will continue to encroach on natural mosquito habitats, particularly coastal wetlands, and expose the community to the health risks associated with mosquitoes. In many existing areas, ever increasing density of human populations associated with high rise residential developments will further expose people to mosquitoes. The increasing urban development adjacent to wetlands can restrict the ability to use traditional larvicide and insect growth regulator application methods. In 2016 a trial of larvicide application via remote piloted aircraft was undertaken in an area of estuarine wetlands at Sydney Olympic Park. An existing mosquito control program involving helicopter application of larvicides has been in place for over a decade. Post-treatment mortality of Aedes vigilax and Culex sitiens larvae was compared between bioassay and long-term surveillance sites within the wetlands. While there was a substantial reduction in larval densities post-treatment, the treatments via remote piloted aircraft were less effective than those of traditional piloted aircraft. The results of this preliminary trial suggest that the use of remote piloted aircraft has potential but the operational aspects of this application method requires careful consideration if there are to be as effective as existing strategies.


Seasonal Activity, Vector Relationships and Genetic Analysis of Mosquito-Borne Stratford Virus

Cheryl S. Toi1, Cameron E. Webb1,2, John Haniotis1, John Clancy1 and Stephen Doggett1

1Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West – Institute for Clinical Pathology and Medical Research, Westmead Hospital, NSW; 2Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Institute for Clinical Pathology and Medical Research, Westmead Hospital, NSW;

There are many gaps to be filled in our understanding of mosquito-borne viruses, their relationships with vectors and reservoir hosts, and the environmental drivers of seasonal activity. Stratford virus (STRV) belongs to the genus Flavivirus and has been isolated from mosquitoes and infected humans in Australia. However, little is known of its vector and reservoir host associations. A total of 43 isolates of STRV from field collected mosquitoes collected in NSW between 1995 and 2013 were examined to determine the genetic diversity between virus isolates and their relationship with mosquito species by year of collection. The virus was isolated from six mosquito species; Aedes aculeatus, Aedes alternans, Aedes notoscriptus, Aedes procax Aedes vigilax, and Anopheles annulipes. While there were distinct differences in temporal and spatial activity of STRV, with peaks of activity in 2006, 2008, 2010 and 2013, there was a high degree of sequence homology (89.1% – 97.7%) found between isolates with no evidence of mosquito species, geographic, or temporal divergence. The result suggests the virus is geographically widespread in NSW (albeit only from coastal regions) and increased local STRV activity is likely to be driven by reservoir host factors and local environmental conditions influencing vector abundance. While STRV may not currently be associated with major outbreaks of human disease, with the potential for urbanisation and climate change to increase mosquito-borne disease risks, and the potential for genomic changes which could produce pathogenic strains, understanding the drivers of STRV activity may assist the development of strategic response to public health risks posed by zoonotic flaviviruses in Australia.


Insect specific flaviviruses suppress West Nile virus replication and transmission

Sonja Hall-Mendelin1, Breeanna McLean2, Helle Bielefeldt-Ohmann3, Cameron E. Webb4 Jody Hobson-Peters2, Roy Hall2, Andrew van den Hurk1

1Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield 4108, Queensland, Australia; 2Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia; 3School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton 4343, Queensland, Australia; 4Medical Entomology, Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, NSW, Australia

Diseases caused by mosquito-borne flaviviruses, including dengue (DENV), Zika and West Nile viruses (WNV), are a global problem. New molecular tools have led to recent discoveries of a plethora of insect-specific flaviviruses (ISF) that infect mosquitoes but not vertebrates. Preliminary reports have suggested that transmission of WNV can be suppressed by some ISFs in co-infected mosquitoes, thus the ecology of ISFs and their potential as natural regulators of flaviviral disease transmission is intriguing. In vitro studies with two ISFs discovered in Australia, Palm Creek virus (PCV) and Parramatta River virus (PaRV), demonstrated suppression of WNV, Murray Valley encephalitis virus (MVEV) and DENV replication in mosquito cells (C6/36) previously infected with either of these ISFs. Further in vivo experiments indicated that these ISFs were not transmitted horizontally in the saliva, and that PaRV relied on vertical transmission through the mosquito egg to the progeny. Additional studies revealed a significant reduction of infection and transmission rates of WNV when Culex annulirostris were previously infected with PCV, compared to control groups without PCV. Of particular interest was the specific localisation of ISFs to the midgut epithelium of mosquitoes infected via natural route (vertical transmission – PaRV) or by intrathoracic injection (PCV). Overall these results confirm a role for ISFs in regulating the transmission of pathogenic flaviviruses by mosquitoes and that this interference may occur in the midgut where initial infection occurs. Further research is needed to determine the precise mechanism of this phenomenon and its potential for mosquito-borne disease management.


Neges, Nidos and Nings – so that’s what’s killing my mossie cells!

Roy Hall1, Jody Hobson-Peters1, Helle Bielefeldt-Ohmann1, Caitlin O’Brien1, Breeanna McLean1, Agathe Colmant1, Jessica Harrison1, Thisun Piyasena1, Natalee Newton1, Waylon Wiseman1, Marcus Mah1,2, Natalie Prow2, Andreas Suhrbier2, David Warrilow3, Andrew van den Hurk3, Sonja Hall-Mendelin3, Cheryl Johansen4, Steven Davis5, Weng Chow6, Stephen Doggett7, John Haniotis7 and Cameron Webb7.

1Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Australia; 2QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia; 3Public Health Virology, Forensic and Scientific Services, Coopers Plains, Queensland, Australia; 4Arbovirus Surveillance and Research, Infectious Diseases Surveillance Unit, PathWest Laboratory Medicine WA, Western Australia; 5Berrimah Veterinary Laboratories, Department of Primary Industry and Fisheries, Darwin, Northern Territory, Australia; 6Vector Surveillance and Control, Australian Army Malaria Institute, Enoggera, Queensland, Australia; 7Department of Medical Entomology, West Westmead Hospital, Westmead, NSW, Australia.

Isolation of viruses from mosquitoes is an important component of arbovirus surveillance and virus discovery programs. In our lab, these viruses are detected in inoculated cultures by the appearance of cytopathic effects (CPE) in mosquito cell monolayers or by reactivity of monoclonal antibodies to viral antigens or dsRNA intermediates. Isolates are then identified by RT-PCR or deep sequencing.  We detected extensive CPE in many mosquito cell cultures inoculated with mosquito homogenates from several regions of Australia, however these isolates were not identified by specific mAbs or RT-PCRs designed to detect known arboviruses.  When we investigated their identity by deep sequencing, a new species (Castlerea virus – CsV) in the unclassified taxon Negevirus, was identified in several mosquito species from WA and Brisbane. Two viruses in the newly established Mesoniviridae family (order Nidovirales) were also identified; a novel species named Casuarina virus (CASV) from Coquillettidia xanthogaster in Darwin and from Culex annulirostris in Cairns, and the first Australian isolates of Nam Dinh virus from several mosquito species in Brisbane and Perth. Many isolates of a new genetic lineage of Liao Ning virus, a member of the Seadornavirus genus (family Reoviridae), were also obtained from several mosquito species from different regions of Australia.  These new viruses were isolated at very high frequency in some mosquito collections, and were often found to co-infect isolates of other mosquito-borne viruses making it difficult to obtain pure cultures. We have now developed neutralising antibodies to each virus to facilitate selective removal of these viruses from mixed cultures.

 

That was a busy meeting. I’m exhausted but cannot wait until the next meeting in 2018. Are you a member of the Mosquito Control Association of Australia?

 

 

Moving pictures and managing mosquitoes

Mangroves_Video_June2016

For a few months now I’ve been thinking through some future options for the blog and my science communications activities. I’ve been toying around with starting a podcast or video blog about my work in local wetlands.

#MosquitoWeek has just happened in the U.S. and as it coincided with the close of entries with the Entomological Society of America YouTube competition, I thought what better time to play around with putting together a video.

A year or so ago I had the chance to see Karen McKee (aka The Scientist Videographer) talk about social media and the ways she uses video as a critical component of her community engagement and communications. Since I’m already using Instagram to connect followers with my various wetland sites and mosquito studies (as well as other things), I’ve thought video could be a way to go.

Interesting too since images and video are (or are soon to be) increasingly dominant in social media.

I’m an advocate for mosquito control to be part of overall wetland management. I think I’m sometimes seen as the enemy of wetland and wildlife conservation, not surprising given the perception of mosquito control still influenced by the DDT debate. As we push for the construction and rehabilitation of urban wetlands, the pest and public health risks associated with mosquito populations do need to be considered by local authorities.

I’m often arguing that ecologically sustainable mosquito management is actually critical to wetland conservation. If you’re encouraging the community to visit your wetlands, what happens when they’re chased away by mosquitoes? What about the community living around the wetland? Will nuisance-biting erode the good will of the community for wetland conservation?

You can watch my video, “Why is mosquito management important in our local wetlands?”, at YouTube or below:

You can check out some of my other posts of wetlands, mosquitoes and social media below:

Should we start pulling out mangroves to save our wetlands?

Does wetland rehabilitation need mosquito control?

Can social media help track environmental change?

Mosquitoes, constructed wetlands, urban design and climate change: Some workshop resources

Let me know if you’d be interested in seeing more videos! Send me a tweet.