Unintended consequences of wildlife conservation, could more frogs mean more mosquitoes?

Wetlands_Research_SOPA

We need to do all we can to protect our urban wildlife but what if the ways we do that increases mosquito risk? PhD candidate Jayne Hanford will be presenting the results of her research at the Ecological Society of Australia conference in Tasmania.

Mosquitoes can share their aquatic habitats with many other animals.

The 2019 Ecological Society of Australia conference will be held in Tasmania, 24-29 November. The conference theme, “Ecology: science for practical solutions”, is closely aligned with much of the work my collaborators and myself undertake each summer. We’re trying to ensure that recommendations on managing the pest and public health risks associated with mosquitoes is informed by the best available science.

Practical solutions to the challenges of balancing mosquito management while also ensuring positive outcomes from the environment too.

Jayne Hanford will be presenting her research in the “Field-based manipulative experiments for under-standing environmental change” symposium. She has been studying the aquatic biodiversity of urban wetlands as part of her PhD. This recent project aimed to determine what impacts management of urban wetlands to enhance conditions for local frog populations may have on local mosquito populations.

The research was undertaken at Sydney Olympic Park where an extensive network of freshwater ponds make up Narawang Wetlands. These wetlands are home to the endangered Green and Golden Bell Frog (Litoria aurea) but they’re also home to the plague minnow (Gambusia holbrooki). The plague minnow is essentially the cane toad of Australia’s waterways, introduced around 100 years ago to control mosquito populations, this aggressive predatory fish has impacted much of our local aquatic life, especially frogs. Populations of this fish need to be managed to enhance conditions for local frogs and, especially, their tadpoles.

Jayne has already found that mosquitoes avoid water bodies where the fish are found. The next step was to see how the seasonal draining of the local wetlands impacted the abundance and diversity of mosquito populations.

Immature mosquitoes and other aquatic macroinvertebrates were sampled from drained and undrained ponds within the wetland network. Once the drained ponds had been at least partially reflooded, mosquitoes were more likely to be found. This wasn’t too surprising given the results of previous experiments. Mosquitoes like to avoid habitats with fish but also, if they do lay eggs in those habitats, mosquito larvae aren’t likely to last long!

The results are useful for those authorities looking to manage waterbodies for wildlife conservation. Removal of the plague minnow may result in more suitable conditions being created for mosquitoes. It may be good for the frogs but we also know that their tadpoles aren’t eating the mosquito larvae. Strategies may be required to manage the pest and public health risks associated with local mosquitoes in these habitats.

You can catch Jayne’s work in the poster session but also as part of the symposium at 3pm on Monday 25 November in Chancellor 5!

The full abstract for Jayne’s presentation is below:

Unintended impacts of managing urban wetlands for conservation

Jayne K. Hanford1,2*, Cameron E. Webb2,3 , Dieter F. Hochuli1

1 School of Life and Environmental Sciences, The University of Sydney, Australia; 2 Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Australia; 3 Medical Entomology, NSW Health Pathology, Westmead Hospital, Westmead, Australia.

Urban wetlands are increasingly being recognised as valuable conservation resources that support significant biodiversity. Concerns around the pest and public health risks of mosquitoes will restrict how we manage these wetlands, as outbreaks of mosquito-borne diseases fuel public fear and foster dislike of mosquitoes. Understanding the ecological and public health consequences of wetland management practices is vital to maximise the conservation value of urban wetlands without negatively impacting public health. Our aim was to determine how wetland management to benefit a threatened species affects mosquitoes and aquatic biodiversity. A group of six urban wetlands in Sydney, Australia, were drained to reduce the abundance of an invasive fish, Gambusia holbrooki, and then refilled to provide breeding habitat for a threatened frog, Litoria aurea. We collected and compared aquatic macroinvertebrates, mosquito larvae, and mosquito adults from these refilled wetlands, and six adjacent undrained wetlands, on four occasions across summer and autumn. Wetland draining had a significant effect on aquatic macroinvertebrates and larval mosquitoes, although differences between drained and undrained wetlands decreased over time. Draining did not affect adult mosquito assemblages associated with the wetlands. The number of constructed and rehabilitated wetlands in urban areas continues to grow, and while conserving threatened habitats and species is imperative, our results highlight how wetland management can impact non-target species with potentially negative effects on humans. It is vital that future design and management of urban wetlands around the world also considers the impact on vectors of human disease.

 

If you’re at the conference, why not join the conversation on Twitter using the official conference hashtag #ESAus19 or reaching out to Jayne or myself!

 

 

 

 

 

 

Ross River virus in Sydney, should we be worried?

IMG_8615

Health authorities in NSW recently released warnings to avoid mosquito bites following the detection of Ross River virus in wetlands along two major river systems in metropolitan Sydney. Whats going on and should these findings be something to be worried about?

What is Ross River virus?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. The virus is spread by the bite of a mosquito and about 40 different mosquito species have been implicated in its transmission.

The disease caused by Ross River virus is not fatal but it can be severely debilitating.

Thousands of Australian’s are infected each year. We have some idea of the quantity of infections as Ross River virus disease is classified as a notifiable disease. While the official statistics indicate there are around 5,000 cases of illness across the country (there are between 500 and 1,500 cases per year in NSW), there are likely to be many more people that experience a much milder illness and so never get blood tests to confirm infection. These people won’t appear in official statistics.

What makes Ross River virus a fascinating pathogen to study is also what makes it extremely difficult to predict outbreaks. Transmission cycles require more than just mosquitoes. Mosquitoes don’t emerge from local wetlands infected with the virus, they need to bite an animal first and become infected themselves before then being able to pass on the pathogen to people.

It is generally thought that kangaroos and wallabies are the most important animals driving outbreak risk. However, we’re starting to better understand how the diversity of local wildlife may enhance, or reduce, likely transmission risk.

How was the virus found in Sydney?

The recent warnings have been triggered by the results of mosquito trapping and testing around Sydney. NSW Health coordinates an arbovirus and mosquito monitoring program across the state and this includes surveillance locations within metropolitan Sydney.

Mosquitoes are collected using traps baited with carbon dioxide. They trick the mosquitoes into thinking the trap is an animal. By catching mosquitoes, we can better understand how the pest and public health risks vary across the city and the conditions that make mosquitoes increase (or decrease) in numbers.

It mostly occurs around the metropolitan region’s northern and southern river systems and generally associated with estuarine or brackish-water wetlands. In these areas, there are often abundant mosquitoes and wildlife. Along the Parramatta River, there are often abundant mosquito populations but given the heavily urbanised landscape, there aren’t many kangaroos and wallabies.

The nuisance impacts of mosquitoes, such as Aedes vigilax, dispersing from the estuarine wetlands of the Parramatta River can create challenges for local authorities. These challenges include targeted wetland conservation and rehabilitation strategies along with ecologically sustainable mosquito control programs.

Is the detection of the virus in Sydney unusual?

The detection of Ross River virus is not that unusual. Detection of Ross River virus (as well as other mosquito-borne viruses such as Stratford virus) along the Georges River in southern Sydney is an almost annual occurrence. The local health authorities routinely issue warnings and in recent years have successfully used social media to spread their messages.

Ross River virus has also previously been detected along the Parramatta River.

While there have been confirmed local clusters of locally acquired Ross River virus in the suburbs along the Georges River, there have been no confirmed cases of Ross River virus disease in the suburbs along the Parramatta River.

There are a few reasons why more disease isn’t reported. Health authorities are active in promoting personal protection measures, sharing recommendations on insect repellent use and providing regular reminders of the health risks associated with local mosquitoes. It isn’t unreasonable to think these actions raise awareness and encourage behaviour change that reduces mosquito bites and subsequent disease.

Along the Georges River, there is clearly a higher risk of infection given the more significant wildlife populations, especially the wallabies common throughout Georges River National Park. By comparison, along the Parramatta River there are fewer bushland areas and virtually no wallabies (except for the occasional one hopping across the Sydney Harbour Bridge). Even in the wetland areas around Sydney Olympic Park, there is abundant bird life, meaning mosquitoes are probably more likely to be biting the animals than people. A study looking at the blood feeding preferences of mosquitoes in the local area found that animals were more likely to be bitten, mosquitoes actually only fed on humans about 10% of the time.

It is important that if you’re spending a lot of time outdoors in these areas, especially close to wetlands and bush land areas at dawn and dusk when mosquitoes are most active, take measure to reduce the risk of being bitten. Cover up with long sleeved shirts and long pants and apply an insect repellent. Choose a repellent that contains either DEET (diethlytoluamide), picaridin, or oil of lemon eucalyptus. Apply it to all exposed skin to ensure there is a thin even coat – a dab “here and there” doesn’t provide adequate protection. More tips here.

Also, keep in mind that just because cooler weather has arrived, the health risks associated with mosquitoes remain. That means keeping in mind that mosquitoes will be out and about just as football and netball seasons start so take along some mosquito repellent to training nights.

++

Join the conversation on Twitter!

++

 

 

 

 

 

 

 

Taking Australian wetland research to China

jayne_mosquitotrap

My PhD student Jayne Hanford has been super busy this year. Not much more than a year into her candidature and she has already locked away a summer of research and has been presenting her findings at conferences here in Australia as well as overseas.

After recently sharing our research at the Society for Wetland Scientists Annual Conference held in Corpus Christi, Texas, USA and the Mosquito Control Association of Australia conference on the Gold Coast, Jayne is off to China for the 10th INTECOL International Wetlands Conference.

Her research is focused on understanding the links between wetland vegetation, aquatic biodiversity and mosquito populations. Better understanding of these links will assist management strategies that minimise actual and potential pest and public health risks associated with mosquitoes and urban wetlands.

Our abstract for the conference is below:

Is the Biodiversity Value of Constructed Wetlands Linked to their Potential Mosquito-Related Public Health Risks?

Jayne Hanford1, Cameron Webb2, Dieter Hochuli1

1School of Life and Environmental Sciences, The University of Sydney, Australia; 2Department of Medical Entomology, Westmead Hospital and The University of Sydney, Westmead, Australia

 Stormwater treatment wetlands constructed in cities can enhance the sustainability of urban biodiversity by providing wildlife refuge areas and habitat connectivity. However, the creation of wetlands for stormwater infrastructure can increase risks to public health and wellbeing by proliferating nuisance-biting and pathogen-transmitting mosquitoes. In severe cases, this proliferation can erode goodwill in the community for creating and protecting valuable wetland systems.  We compared mosquito assemblages at 24 natural and constructed urban wetlands in the greater Sydney region, Australia. Our aim was to determine if stormwater wetlands constructed with the goal to support high biodiversity value also had reduced associated mosquito risks. Wetlands were located across a gradient of urbanisation determined by surrounding human population density, and included sites with different aquatic and riparian habitat complexity and availability. Adult and larval mosquitoes and aquatic macroinvertebrates were sampled on two occasions through summer and autumn. Aquatic macroinvertebrates were used to derive health indices, as well as being a relative measure of aquatic diversity.  Diversity of adult mosquito species was high, and abundance varied greatly between wetlands. Macroinvertebrate assemblages were also highly variable between sites. Wetlands with greater habitat complexity had lower adult mosquito abundance and greater mosquito species diversity, compared to stormwater-specific wetlands with minimal available habitat. As expected, mosquito assemblages did not respond to urbanisation and aquatic macroinvertebrate assemblages per se, but appeared to respond to a complex suite of coarse and fine-scale features that may affect a wetland’s biodiversity value.  Effectively integrating wetlands into cities requires balancing their design for water infrastructure purposes, biodiversity resources and public health and wellbeing requirements. Understanding the risks as well as the benefits will enhance the value of constructed urban wetlands in sustainable cities while minimising public health risks posed by mosquitoes.

Jayne will be speaking in the “The next generation of wetland science: ecosystems, applications, and engineering” session in the Nanhu Room 1520-1530 on Wednesday 21 September.

You can keep an eye on whats happening in China by following Jayne on Twitter and checking the hashtag

westernsydneywetlands

The Society for Wetland Scientists Annual Conference held in Corpus Christi, Texas, USA back in May included a paper by Jayne titled “Risky Wetlands? Conflicts between biodiversity value and public health” and prompted some great feedback and discussion among wetland scientists at the meeting. It was a successful trip and a timely reminder that I must get to one of the SWS meetings sometime soon, perhaps Puerto Rico?

Keep an eye out for Jayne’s research publications soon!