Ross River virus in Sydney, should we be worried?

IMG_8615

Health authorities in NSW recently released warnings to avoid mosquito bites following the detection of Ross River virus in wetlands along two major river systems in metropolitan Sydney. Whats going on and should these findings be something to be worried about?

What is Ross River virus?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. The virus is spread by the bite of a mosquito and about 40 different mosquito species have been implicated in its transmission.

The disease caused by Ross River virus is not fatal but it can be severely debilitating.

Thousands of Australian’s are infected each year. We have some idea of the quantity of infections as Ross River virus disease is classified as a notifiable disease. While the official statistics indicate there are around 5,000 cases of illness across the country (there are between 500 and 1,500 cases per year in NSW), there are likely to be many more people that experience a much milder illness and so never get blood tests to confirm infection. These people won’t appear in official statistics.

What makes Ross River virus a fascinating pathogen to study is also what makes it extremely difficult to predict outbreaks. Transmission cycles require more than just mosquitoes. Mosquitoes don’t emerge from local wetlands infected with the virus, they need to bite an animal first and become infected themselves before then being able to pass on the pathogen to people.

It is generally thought that kangaroos and wallabies are the most important animals driving outbreak risk. However, we’re starting to better understand how the diversity of local wildlife may enhance, or reduce, likely transmission risk.

How was the virus found in Sydney?

The recent warnings have been triggered by the results of mosquito trapping and testing around Sydney. NSW Health coordinates an arbovirus and mosquito monitoring program across the state and this includes surveillance locations within metropolitan Sydney.

Mosquitoes are collected using traps baited with carbon dioxide. They trick the mosquitoes into thinking the trap is an animal. By catching mosquitoes, we can better understand how the pest and public health risks vary across the city and the conditions that make mosquitoes increase (or decrease) in numbers.

It mostly occurs around the metropolitan region’s northern and southern river systems and generally associated with estuarine or brackish-water wetlands. In these areas, there are often abundant mosquitoes and wildlife. Along the Parramatta River, there are often abundant mosquito populations but given the heavily urbanised landscape, there aren’t many kangaroos and wallabies.

The nuisance impacts of mosquitoes, such as Aedes vigilax, dispersing from the estuarine wetlands of the Parramatta River can create challenges for local authorities. These challenges include targeted wetland conservation and rehabilitation strategies along with ecologically sustainable mosquito control programs.

Is the detection of the virus in Sydney unusual?

The detection of Ross River virus is not that unusual. Detection of Ross River virus (as well as other mosquito-borne viruses such as Stratford virus) along the Georges River in southern Sydney is an almost annual occurrence. The local health authorities routinely issue warnings and in recent years have successfully used social media to spread their messages.

Ross River virus has also previously been detected along the Parramatta River.

While there have been confirmed local clusters of locally acquired Ross River virus in the suburbs along the Georges River, there have been no confirmed cases of Ross River virus disease in the suburbs along the Parramatta River.

There are a few reasons why more disease isn’t reported. Health authorities are active in promoting personal protection measures, sharing recommendations on insect repellent use and providing regular reminders of the health risks associated with local mosquitoes. It isn’t unreasonable to think these actions raise awareness and encourage behaviour change that reduces mosquito bites and subsequent disease.

Along the Georges River, there is clearly a higher risk of infection given the more significant wildlife populations, especially the wallabies common throughout Georges River National Park. By comparison, along the Parramatta River there are fewer bushland areas and virtually no wallabies (except for the occasional one hopping across the Sydney Harbour Bridge). Even in the wetland areas around Sydney Olympic Park, there is abundant bird life, meaning mosquitoes are probably more likely to be biting the animals than people. A study looking at the blood feeding preferences of mosquitoes in the local area found that animals were more likely to be bitten, mosquitoes actually only fed on humans about 10% of the time.

It is important that if you’re spending a lot of time outdoors in these areas, especially close to wetlands and bush land areas at dawn and dusk when mosquitoes are most active, take measure to reduce the risk of being bitten. Cover up with long sleeved shirts and long pants and apply an insect repellent. Choose a repellent that contains either DEET (diethlytoluamide), picaridin, or oil of lemon eucalyptus. Apply it to all exposed skin to ensure there is a thin even coat – a dab “here and there” doesn’t provide adequate protection. More tips here.

Also, keep in mind that just because cooler weather has arrived, the health risks associated with mosquitoes remain. That means keeping in mind that mosquitoes will be out and about just as football and netball seasons start so take along some mosquito repellent to training nights.

++

Join the conversation on Twitter!

++

 

 

 

 

 

 

 

Giant mosquitoes are invading my backyard!

Toxorhynchites_TessSpillekom_Newcastle

“I’ve never seen anything like it. I actually heard it before I saw it!”

I get more than a dozen emails, tweets, or phone calls every summer like this. Excited (terrified?) correspondence asking about the “giant” mosquito captured in the backyard or buzzing about windows.

Toxorhynchites speciosus is as “good” a mosquito as there can be. First, it is a gorgeous creature. Almost four times the size of a typical mosquito, it is a large dark and shiny mosquito with bright metallic patterns.

There are around 70 species of Toxorhynchites mosquitoes around the world but only a few species found in Australia. The mosquito is reasonably common, but rarely very abundant. It is found along the eastern and north coast of Australia, stretching from Sydney through to Darwin.

Toxo_larvae

The larvae of Toxorhynchites speciosus are large and easily spotted in water-holding containers around the backyard

This is one of the few mosquitoes that don’t need blood. Unlike almost all other mosquitoes, the females of which need blood to develop their eggs, Toxorhynchites speciosus doesn’t bite. It gets its energy from plant juices and nectar.

Even though it doesn’t bite, the sheer size of this mosquito makes it an imposing sight.

They most commonly lay eggs in water holding containers around the home. Pot plant saucers, bird baths, watering cans, buckets, bins and even tree holes and water-filled bromeliads. These are the same types of water-filled containers where you’ll find wrigglers of the pest mosquitoes Aedes notoscriptus and Culex quinquefasciatus.

They have a fascinating way of laying eggs. Unlike many other mosquitoes that elegantly stand on the water surface and lay up to 300 eggs in a neatly packed floating raft, Toxorhynchites lays single eggs. It  doesn’t even land on the water to lay eggs, it fires them into water while in mid flight!

Once an appropriate place to deposit an egg has been identified, the mosquito flies in a vertical loop, the loops getting ever smaller until the egg is ejected and into nearby habitats. A neat trick and avoids the risk of being eaten by a hungry spider or other predator waiting by to grab a mosquito coming in to lay eggs.

Toxorhynchites_HelenMamas_Newtown

A specimen of Toxorhynchites speciosus collected by Helen Mamas from the inner west suburb of Sydney, Newtown

Not only do these mosquitoes not bite, they even help out with a little pest mosquito control around the home.

While the mosquito wrigglers of mosquito mosquitoes feed on organic debris floating about in water bodies, the larvae of Toxorhynchites speciosus are predatory and feed on the wrigglers of other mosquitoes. Laboratory studies have shown that a closely related Toxorhnychites consumed over 300 Aedes aegypti  (aka the dengue mosquito) larvae during its development. In some parts of the world, a closely related mosquito is used as a biological control agent of the pests that spread dengue, chikungunya and Zika viruses.

While Toxorhynchites speciosus will chomp through plenty of wrigglers of Aedes notoscriptus each summer in Australian backyards, it is unlikely to make a huge difference in bites.

My experience in backyards across Sydney has shown that there is something of a tug-o-war between Toxorhynchites speciosus and other mosquitoes. While undertaking a project with Ku-ring-gai Council looking at backyard mosquitoes and their possible impact on backyard wildlife conservation efforts, I’d often find a fluctuating dynamic between the mosquito predators and their prey. Populations of Aedes notoscriptus or Culex quinquefasciatus would build up in bird baths and buckets, then Toxorhynchites speciosus would move in. They’re eat through all the other larvae, then once emerged and flown off, the other mosquitoes would move back in. And the cycle continued.

Toxorhynchites_DavidLawson_Marrickville

Image of Toxorhynchites speciosus sent to be by David Lawson from the inner west suburbs of Marrickville, Sydney.

Next time you see a “giant mozzie” buzz by, think twice before you squish it. Oh, and keep in mind that this mosquito is also a movie star! Do you recognise it from Jurassic Park?

If you want to keep the pest mosquitoes out of your backyard, make sure you get rid of any water-holding containers. If you can’t throw them out, keep them covered.

Check to make sure your roof gutters and drains are clear of leaves and other debris so they flow freely. Check your rainwater tank is screened to stop the mozzies entering. And try not to kill the good guys who help keep the other mozzies at bay!

For more on how to better control insect pests in and around the home, read one of our latest publications on engaging urban stakeholders in the sustainable management of arthropod pests.

Find out more about Australia’s fascinating mosquitoes by checking out our “A Guide to Mosquitoes of Australia” via CSIRO Publishing!

 

Preparing for the exotic mosquito invasion of Australian backyards

Backyardbuckets_Tweed_Feb2018

While Australia has hundreds of “home-grown” mosquitoes, it is just a few from overseas that have authorities on alert. Preparing for these new risks is critical if the future pest and public health risks associated with mosquitoes are to be effectively managed. Citizen scientists may hold the key to success!

A project underway in the Northern Rivers region of NSW is set to build a framework for responding to the threats of exotic mosquitoes. This is in association with the Building Resilience to Climate Change program, a partnership program between Local Government NSW (LGNSW) and the NSW Office of Environment and Heritage (OEH) to address identified climate change risks and vulnerabilities facing NSW councils.

Lead by Tweed Shire Council, the program “Developing and trialing a Northern Rivers Emerging Vector Response Plan” is designed to build capacity among local stakeholders in the region to better respond to possible introductions of exotic mosquitoes from overseas (or perhaps travelling south from Queensland).

The mosquitoes that pose the greatest risk are Aedes aegypti and Aedes albopictus. As well as being severe nuisance-biting pests, these mosquitoes can transmit pathogens of serious public health concern such as Zika, dengue and chikungunya viruses. The mosquitoes aren’t found in local wetlands, they prefer backyard water-holding containers. This means that should these mosquitoes make their way to NSW, local authorities must shift their focus from the swamps to the suburbs.

There is already a program in place monitoring mosquitoes and the pathogens they carry in NSW. This program is primarily focused on Ross River virus and the mosquitoes that transmit this pathogen. As a consequence, mosquito collections are typically in bushland or wetland areas adjacent to urban areas and may not readily pick up exotic mosquitoes that have moved into local backyards.

Authorities must expand their approach and develop strategic responses to these exotic threats.

THW_3

Representatives of local stakeholders help survey 300 backyards in Tweed Heads!

This work is already underway. A workshop for local stakeholders was held in December 2017 in Tweed Heads along with a two day field exercise in which around 300 residential backyards were surveyed for potential mosquito habitats. A wide range of potential sources of mosquitoes was identified, the most common were water-filled plants (particularly bromeliads), pot-plant saucers, buckets, wheel burrows, garden ornaments, and rainwater tanks.

The survey highlighted how important community involvement in the program is and “citizen science” is currently being employed to assess some mosquito surveillance technologies in backyards across the Tweed Heads region.

Supported by a grant from the Human Health and Social Impacts Node, a partnership between the Office of Environment and Heritage, NSW Health and The University of Sydney, over 150 mosquito traps were deployed and it is hoped that the mosquitoes they collect will help inform the development of strategic mosquito surveillance in the future.

Backyardovitrap_Tweed_Feb2018

An example of the mosquito traps deployed across two suburbs in Tweed Heads to collect eggs from mosquitoes buzzing about backyards

Whats needed now is a better understanding of how the community thinks about mosquitoes and how they’re trying to make their backyard less favourable for these pests.

Residents in the Local Government Areas of Tweed, Byron, Ballina, Richmond Valley, Clarence Valley, Lismore and Kyogle are invited to participate in a short survey. It is a great way to learn how to reduce the risks of mosquito bites in your backyard (there is also an iPad that can be won!).

If you live in the areas mentioned, or know friends or family who do, please complete and/or share the details of the survey.

You can start the survey now!

There are many factors contributing to the future threat of  mosquitoes and mosquito-borne disease in Australia. Climate change or exotic mosquito introductions may be game changes but one of the most important considerations is the importance of community awareness and willingness to assist local health authorities.

Perhaps the new mosquito emoji will help too?

 

 

 

 

 

Why do mosquitoes seem to bite some people more?

Back in 2015, I had an article published at The Conversation on why some people are more likely to be bitten by mosquitoes than others. It is one of the most commonly asked questions I get whenever I give public talks (or friends and family are quizzing me at summer BBQs).

This article was incredibly successful and has currently been read by approximately 1.4 million people. That is a lot of people. Hopefully the science of mosquito bites has got out there and actually helped a few people stop themselves or their family being bitten by mosquitoes!

The warm weather is starting to arrive here in Australia so I am sharing this once more for those wondering why they’re always the “mosquito magnet” among their friends…

Health Check: why mosquitoes seem to bite some people more

Image 20150123 2159 14n8u7p
There are up to 400 chemical compounds on human skin that could play a role in attracting mosquitoes.  sookie/Flickr, CC BY-SA

There’s always one in a crowd, a sort of harbinger of the oncoming mosquito onslaught: a person mosquitoes seem to target more than others. What is it about these unlucky chosen few that makes them mosquito magnets?

There are hundreds of mosquito species and they all have slightly different preferences when it comes to what or who they bite. But only females bite; they need a nutritional hit to develop eggs.

Finding someone to bite

Mosquitoes are stimulated by a number of factors when seeking out a blood meal. Initially, they’re attracted by the carbon dioxide we exhale. Body heat is probably important too, but once the mosquito gets closer, she will respond to the smell of a potential blood source’s skin.

Studies have suggested blood type (particularly type O), pregnancy and beer drinking all make you marginally more attractive to mosquitoes. But most of this research uses only one mosquito species. Switch to another species and the results are likely to be different.

There are up to 400 chemical compounds on human skin that could play a role in attracting (and perhaps repulsing) mosquitoes. This smelly mix, produced by bacteria living on our skin and exuded in sweat, varies from person to person and is likely to explain why there is substantial variation in how many mozzies we attract. Genetics probably plays the biggest role in this, but a little of it may be down to diet or physiology.

One of the best studied substances contained in sweat is lactic acid. Research shows it’s a key mosquito attractant, particularly for human-biting species such as Aedes aegypti. This should act as fair warning against exercising close to wetlands; a hot and sweaty body is probably the “pick of the bunch” for a hungry mosquito!

Probably the most famous study about their biting habits demonstrated that the mosquitoes that spread malaria (Anopheles gambiae) are attracted to Limburger cheese. The bacteria that gives this cheese its distinctive aroma is closely related to germs living between our toes. That explains why these mosquitoes are attracted to smelly feet.

But when another mosquito (such as Aedes aegypti) is exposed to the same cheese, the phenomenon is not repeated. This difference between mosquitoes highlights the difficulty of studying their biting behaviours. Even pathogens such as malaria may make us more attractive to mosquitoes once we’re infected.

Only females bite because they need a nutritional hit to develop eggs.
Sean McCann/Flickr, CC BY-NC-SA

Researchers are trying to unscramble the irresistible smelly cocktails on the skins of “mosquito magnets”. But the bad news is that if you’re one of these people, there isn’t much you can do about it other than wearing insect repellents.

The good news is that you may one day help isolate a substance, or mixes of substances, that will help them find the perfect lure to use in mosquito traps. We could all then possibly say goodbye to topical insect repellents altogether.

Attraction or reaction?

Sometimes, it’s not the bite as much as the reaction that raises concerns. Think of the last time the mosquito magnets in your circle of friends started complaining about being bitten after the event where the purported mosquito feast took place. At least, they appear to have attracted more than the “bite free” people who were also at the picnic, or concert or whatever.

But just because some people didn’t react to mosquito bites, doesn’t mean they weren’t bitten. Just as we do with a range of environmental, chemical or food allergens, we all differ in our reaction to the saliva mosquitoes spit while feeding.

People who don’t react badly to mosquito bites may think they haven’t been bitten when they’ve actually been bitten as much as their itchy friends. In fact, while some people attract more mosquito bites than others, there’s unlikely to be anyone who never, ever, gets bitten.

The problem is that people who don’t react to mosquito bites may all too easily become complacent. If you’re one of them, remember that it only takes one bite to contract a mosquito-borne disease.

Finally, there is no evidence from anywhere in the world that there is something you can eat or drink that will stop you being bitten by mosquitoes. No, not even eating garlic, or swallowing vitamin B supplements.

The ConversationPerhaps if we spent as much time thinking about how to choose and use mosquito repellents as we do about why mosquitoes bite our friends and family less than us, there’d be fewer bites all around.

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article was originally published on The Conversation. Read the original article.

 

Talking wetlands, wildlife and mosquitoes at the 2017 Australian Entomological Society Meeting

homebushbay_mangroves_jan2016

I’ll be in Terrigal, on the NSW Central Coast, for the 2017 Australian Entomological Society conference and taking the opportunity to present a summary of a number of collaborative projects undertaken in recent years, from working out how surrounding landuse influences the mosquito populations in urban mangroves to how important mosquitoes are to the diet of local bats.

Together with a range of colleagues, I’ve been undertaking research into the factors driving mosquito and mosquito-borne disease risk in urban wetlands. It is a complex puzzle to solve with more than just mosquitoes determining local pest and public health risks. However, with outbreaks of mosquito-borne Ross River virus on the rise in recent years, including urban areas of Australia, there is a need to better understand the factors at play.

There is a range of factors that may increase the risk of Ross River virus, they include suitable wetlands, wildlife reservoirs of the pathogen and mosquitoes. Understanding the mosquitoes associated with urban estuarine and freshwater wetlands is critical.

Investigating the role of surrounding landuse in determining the mosquito communities of urban mangroves, we found that industrial and residential areas tended to increase abundance of mosquitoes, perhaps due to direct or indirect impacts on the health of those mangroves. We’ve found previously that mosquitoes problems are often associated with estuarine wetlands suffering poor health, perhaps this is determining the increased mosquito risk we identified? You can read more in our publication here.

Expanding the investigation to look at urban freshwater wetlands, it was found that there was a high degree of variability in local mosquito populations and that each wetland needed to be assessed with consideration to be given to site-specific characteristics. You can read more about our work investigating mosquito assemblages associated with urban water bodies in our publication here.

More research is underway in this field and my PhD student, Jayne Hanford, has already started collecting some fascinating data on wetland biodiversity and local mosquito populations.

While the focus of our studies is often prompted by concern about Ross River virus, interestingly, in recent years we’ve found considerable activity of Stratford virus. This is not currently considered a major human health concern but given how widespread it is, it raises concerns about the suitability of local wildlife, even in Western Sydney, to represent important reservoirs of mosquito-borne pathogens. You can read more about Stratford virus in our publication here.

The final piece of the puzzle is to understand the ecological role of mosquitoes. Where their potential health threats are deemed significant, how could management of mosquito populations have unintended consequences for other wildlife. What about the animals that eat mosquitoes? A number of years ago we did some research to determine the importance of mosquitoes in the diet of coastal bats. While there was no indication that mosquitoes are a critical component of their diet, they are still being snacked on and mosquito control programs need to consider any local ecological impacts.

Now, how am I going to squeeze all this into 15 minutes….

The presentation abstract is below:

What drives mosquito-borne disease risk in urban wetlands?

Webb, C. (1, 2), J. Hanford (3), S. Claflin (4), W. Crocker (5), K. Maute (5), K. French (5), L. Gonsalves (6) & D. Hochuli (3)

(1) Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, NSW 2145; (2) Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, NSW 2006; (3) School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006; (4) Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000; (5) Centre for Sustainable Ecosystem Solutions, Biological Sciences, Faculty of Science, Medicine & Health, University of Wollongong NSW, 2522; (6) School of Arts and Sciences, Australian Catholic University, North Sydney, NSW, 2060.

Managing pest and public health risks associated with constructed and rehabilitated urban wetlands is of increasing concern for local authorities. While strategic conservation of wetlands and wildlife is required to mitigate the impacts of urbanisation and climate change, concomitant increases in mosquitoes and mosquito-borne disease outbreak risk must be addressed. However, with gaps in our understanding of the ecological role of mosquitoes, could control strategies have unintended adverse impacts on vertebrate and invertebrate communities? A series of studies were undertaken in urban wetlands of greater Sydney to investigate the role of land use, wetland type and wetland aquatic biodiversity in driving the abundance and diversity of mosquito populations. A diverse range of mosquitoes, including key pest an vector species, were found in urban environments and mosquito-borne pathogens were detected in local populations, implicating local wildlife (e.g. water birds and macropods) as potential public health risk factors. Estuarine wetlands are locally important with the percentage of residential land and bushland surrounding wetlands having a negative effect on mosquito abundance and species richness while the amount of industrial land had a significant positive effect on species richness. Mosquito control in these habitats is required but insectivorous bats were identified as mosquito predators and the indirect implications of mosquito control should be considered. The aquatic biodiversity of urban freshwater wetlands influenced the species richness of local mosquito populations indicating vegetation plays an important role in determining local pest species. However, the matrix of wetland types also influences the abundance of mosquitoes in the local area. These results demonstrate the need for site-specific investigations of mosquito communities to assist local authorities develop policies for urban development and wetland rehabilitation that balance the need for conservation with reduced public health risks.

To keep up to date on what’s happening at the conference, check out the program online or follow the conversation on Twitter.

 

Ross River virus in Melbourne, how did that happen?

aedesnotoscriptus

Health authorities in Victoria have been warning of mosquito-borne Ross River virus for much of the summer. The state is experiencing one of its worst outbreaks of the disease but cases have mostly been across inland regions. Now it’s hit Melbourne. How has this happened?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. There are usually about 5,000 cases across Australia. However, in 2015 there was a major spike in activity with around 9,000 cases reported. It is a common misconception that the disease is only found in northern regions of Australia. I’m often told “I heard the disease is moving south from QLD?” That’s not the case.

The virus is just as much a natural part of the Australian environment as the mosquitoes and the wildlife that maintain transmission cycles.

While there are generally more cases in northern Australia, nowhere is safe. Some of the largest outbreaks have occurred in southern regions of Western Australia, South Australia, Victoria and even Tasmania.

The virus is widespread but is generally associated with rural regions. A driving factor in determining the activity of Ross River virus is that more than just mosquitoes are involved in outbreaks. The virus is maintained in the environment in native wildlife, especially kangaroos and wallabies. Even when and where there are high numbers of mosquitoes, without wildlife, outbreak risk is low. This is the reason why any clusters of locally infected cases in metropolitan regions are typical in areas where there are wetlands, wildlife and mosquitoes occurring together. We’ve seen this on the urban fringe of Sydney and Perth in recent years.

The announcement of locally acquired cases in the suburbs of Frankston and Casey, in Melbourne’s south-east, has taken many by surprise. Should it have?

Victoria is no stranger to mosquitoes and outbreaks of mosquito-borne disease. There are mosquito surveillance and mosquito control programs in place in many regions and historically there have been major outbreaks of mosquito-borne disease. From freshwater flood plains of the inland to the tidally flooded estuarine wetlands of the coast, Victoria has diverse and often abundant mosquitoes. But cases in the metropolitan region are rare.

Victorian mosquitoes are not all bad but over a dozen different mosquito species can spread Ross River virus.

The region where these cases have been identified are in proximity to bushland and wetland areas. There is no doubt plenty of mosquitoes and suitable wildlife too. While this is the first time local transmission has been documented, that doesn’t mean the virus hasn’t circulated in the past, or even that cases may have occurred.

For individuals infected but only suffering mild symptoms, the illness can be easily discounted as nothing more than a mild case of the flu. Without appropriate blood tests, these cases never appear in official statistics. For this reason, many mosquito researchers believe that the number of notified cases across the country is just the tip of the iceberg with many milder infections going diagnosed.

But why in Melbourne now?

It is difficult to know for sure. The two most likely explanations are that either environmental conditions were ideal for mosquitoes and suitable populations of wildlife were present so that the virus was much more active in the local environment than previously. The second explanation is that the virus may have been introduced to the region by a traveller or movement of wildlife. In much the same way Zika virus made its way from SE Asia to South America in the last few years, mosquito-borne viruses move about in people and animals, much less so than mosquitoes themselves (but that isn’t impossible either).

Victoria (as well as inland NSW) is experiencing one of its largest outbreaks of Ross River virus on record following significant flooding of inland regions. With so much activity of the virus in the region, perhaps an infected bird or person travelling to the metropolitan region brought the virus with them. When bitten by local mosquitoes, the virus started circulated among local mosquitoes and wildlife.

Most people infected by Ross River virus are bitten by a mosquito that has previously fed on a kangaroo or wallaby.

Once it’s made its way to metropolitan regions, the virus can be spread from person to person by mosquitoes. Common backyard mosquitoes, especially Aedes notoscriptus, can transmit the virus but as these mosquitoes are not particularly abundant, don’t fly vary far and will just as likely bite animals as humans, they’re unlikely to drive major urban outbreaks of the disease. This mosquito doesn’t pack the same virus-spreading-punch as mosquitoes such as Aedes aegypti that spreads dengue, chikungunya and Zika viruses. Aedes aegypti isn’t in Victoria.

We’re unlikely to see significant spread of Ross River virus across Melbourne but that doesn’t mean Victorians should be complacent. As there is no cure for Ross River virus disease, the best approach is to avoid being infected in the first place. Preventing mosquito bites is the best approach. For my tips and tricks on avoiding mosquito bites see this recent paper in Public Health Research and Practice as well as my article for The Conversation.

Keep an eye on the website of Victoria Health for more information.

 

 

 

 

 

West Aussies versus the local mozzies

This is a special guest post from Dr Abbey Potter, Senior Scientific Officer, Environmental Health Hazards, WA Health. I’m currently mentoring Abbey as part of The Public Health Advocacy Institute of WA (PHAIWA) Mentoring Program. Its been a great experience as we navigate through some of the strategies to raise awareness of mosquito-borne disease and advocate for better approaches to addressing the public health risks associated with mosquitoes.

fightthebite_wahealth_flyer

Living in WA, we’re all too familiar with the pesky mosquito. We know they bite but what we often don’t consider is that they can transmit serious and sometimes deadly diseases. In fact, a recent survey of locals indicated that knowledge of mosquito-borne disease is pretty limited, particularly among younger adults aged 18-34 years and those living in the Perth Metro. It’s pretty important we’re aware of the risks posed by these pint-sized blood suckers and how you can avoid them… and here’s why!

The Facts

On average, more than 1,000 people will be infected with a mosquito-borne disease in WA every year. Our mossies can transmit Ross River virus, Barmah Forest virus, West Nile virus (Kunjin substrain) and Murray Valley encephalitis virus. All four cause diseases that are debilitating at best, causing weeks to months of symptoms. Murray Valley encephalitis is limited to the north of the State but is so serious it can result in seizures, coma, brain damage and even death.

Forget the bush, most people bitten in their own backyard. West Aussies are all very prone to getting eaten alive while socialising outdoors but if you’re up in the north of the State, you’ve also got a much higher likelihood of being bitten while boating, camping or fishing or working outside, compared to the rest of the state.

And don’t think you’re off the hook when you head off on holidays. A further 500 WA residents return from overseas travel with an exotic mosquito-borne disease every year. Heading to Bali? Beware of dengue, especially young adult males who return home with the illness more than others. There is limited mosquito management in many overseas countries where disease-transmitting mozzies can bite aggressively both indoors and throughout the day. This catches West Aussies off guard, as we are accustomed to mozzies biting outdoors, around dusk and dawn. When you’re in holiday mode it’s likely that you’ll be relaxing, having a couple of drinks and not thinking about applying repellent. Oddly enough, mosquitoes may actually be more attracted to people whose body temperature is higher. This happens naturally when you consume alcohol, so best pull out the repellent before you crack your first beer.

Despite our attractiveness to mosquitoes, we aren’t really aware of the most effective ways to avoid bites or how we can do our bit to reduce breeding in our own backyards. If you live by the mantra Cover Up. Repel. Clean Up you’ll have no problems!

mandurah_sep2014

Western Australia has some amazingly beautiful wetlands but these saltmarshes around Mandurah can produce large populations of nuisance-biting mosquitoes!

Cover Up

If you know you are going to be outdoors when mosquitoes are active, wear loose, long-fitting clothing that is light in colour. Believe it or not, mosquitoes can bite through tight pants as tough as jeans – I’ve witnessed it!

If you’re staying in accommodation that isn’t mosquito-proof, consider bed netting.

Try to keep children indoors when mosquitoes are most active. If exposure can’t be avoided, dress them appropriately and cover their feet with socks and shoes. Pram netting can also be really useful.

Admittedly, it’s not always practical to wear long sleeves during our warm summer nights, so there are going to be times when you need to use repellent. Choose a product that actually works and apply it appropriately so it does the job. Despite our best intentions, this is where we often go wrong. There are a few basic things to cover here, so stick with it!

Ingredient: Science tells us that the best active ingredient for repelling mosquitoes is diethyltoluamide (DEET for short) or picaridin. You need to look for either one of these names on the repellent label under the ‘active constituents’ section.

Unfortunately, natural repellents and anything wearable (e.g. bands, bracelets or patches) have very limited efficacy. Experts don’t recommend you use them and I consider this very wise advice. It only takes a single mosquito bite to become infected and chances are you will receive at least one if you rely solely on a product of this nature. It just isn’t worth the risk.

mosquito_repellent_wristband_october2015

Percentage: The next thing to consider is the percentage of the active ingredient. This can range anywhere from 7% to 80% which can make choosing a repellent confusing. Just remember, the higher the percentage, the LONGER the product will remain active for. It doesn’t mean it will repel mosquitoes better.

A repellent containing 16-20% DEET will provide around 4-6 hours of protection, and is a good place to start. Repellents labelled ‘tropical strength’ usually contain greater than 20% DEET – they are useful when you spend longer periods exposed to mosquitoes or if you are heading to a region where dengue, malaria or Zika is problematic. Kids repellents usually contain picaridin or <10% DEET.

Sometimes it can be tricky to work out the percentage of the active ingredient. You can see the Bushmans example below states this clearly, but the other bottles list the ingredient in grams per litre (g/L). No need for complex maths – just divide by 10 and you have the magic number! For example, the RID label below reports the product contains 160g/L of DEET. This would convert to 16% DEET – easy!

You can see a few examples here of effective repellents:

repellents_potterpaper

How to Apply: No doubt we would all prefer if repellents didn’t feel quite so gross on our skin or didn’t smell so bad. Even I have to admit that before I moved into this field, I was guilty of putting just a dab here and a dab there. Unfortunately, this is flawed logic that will only result in you being bitten!

Repellents must be applied correctly to be effective. That means reading the label and applying it evenly to all areas of exposed skin. Remember to reapply the product if you are exposed to mosquitoes for longer than the repellent protects you for. You’ll also have to reapply the repellent after sweaty activity or swimming.

For more information on repellent use in adults and children, click here.

Clean Up

Mosquitoes need water to breed, but only a very small amount. Water commonly collects in a range of things you may find in your backyard including pot plant drip trays, toys, old tyres, trailers and clogged up gutters. Mosquitoes also love breeding in pet water bowls, bird baths and pools if the water is not changed weekly or they are not well maintained. Rain water tanks can also be problematic so place some insect proof meshing over any outlets. When you’re holidaying, cover up or remove anything that may collect water.

**

If you need more official info from WA Health about mosquito-borne disease or simple ways to prevent being bitten click here. And if you want to read more about how much West Aussies know (or don’t know) about mossies, check out Abbey’s excellent paper here! Joint the conversation too on Twitter by following Abbey and Cameron.