Preserve and protect? Exploring mosquito communities in urban mangroves

homebushbay_mangroves_jan2016

This is a special guest post from Dr Suzi Claflin. Suzi found herself in Sydney, Australia, (via Cornell University, USA) in 2015 to undertake a research project investigating the role of urban landscapes in determining mosquito communities associated with urban mangroves. She was kind enough to put this post together to celebrate the publication of our research in Wetlands Ecology and Management!

**

Sometimes you’ve got to make hard choices for the greater good. These situations can arise anywhere, but here – as usual – we are concerned with mosquitoes. There’s a balancing act carried out by public health officials and wetland managers trying to both preserve endangered habitat and protect human health. In this guest post, I’ll explain the science behind research I recently published in collaboration with Dr Cameron Webb, and suggest one way forward for addressing human and environmental health concerns in urban wetlands.

During my PhD, I studied how the landscape surrounding small-scale farms affects the spread of a crop virus and the community of insect pests that carry it. When I came to Australia to work with Cameron, I was surprised to find myself applying the same type of landscape ecology to mosquitoes and mangroves in urban Sydney.

The misfortune of mangroves

Mangroves are real team players. They provide a range of services to the surrounding ecosystem and to the humans lucky enough to live near them. Mangroves are extremely effective at protecting the shoreline (but this can sometimes be a problem). They prevent erosion by gripping the soil in their complex root systems and buffer the beach by serving as a wave break. By filtering sediment out of the water that flows over them, mangroves also prevent their neighbouring ecosystems, such as coral reefs and seagrass forests, from being smothered.

Despite all their good work, mangroves have an almost fatal flaw; they prefer waterfront property. Unfortunately for them, so do humans. Urban and agricultural development has eaten away at mangroves, leaving them highly endangered.

The mosquito menace

Mozzies are a public health menace, because they spread human diseases like Ross River virus (RRV). Because of this, public health officials rightly spend time considering how to supress mosquito populations in order to reduce the risk of disease transmission.

Here’s where things get tricky: mangroves are great for mosquitoes.

That leaves public health officials and wetland managers in a difficult position. On the one hand, mangroves are delicate, at-risk ecosystems that need to be preserved. On the other, mangroves and surrounding habitats potentially harbor both the animal carriers of the RRV (e.g. wallabies) and a load of mosquitoes, which means that people nearby may need to be protected.

How can we do both?

 

claflin_mangroves

Dr Suzi Claflin trapping mosquitoes in the mangroves along the Parramatta River, Sydney, Australia.

 

The potential power of prediction

This is a hard question to answer. One approach is prediction: using measurements of the environment, like rainfall and tide level, to estimate what the mosquito community will look like in a given region. The mosquito community determines what management actions, like spraying an insecticide, need to be taken, based on the threat it poses to public health.

We set out to explore how the way we use land (e.g. for residential areas or industrial areas) near urban mangroves affects the mosquito communities that live in those mangroves. The project involved dropping over retaining walls, slipping down banks, and tromping through muddy mangroves along the Parramatta River in Sydney. We set mosquito traps (billy cans of dry ice with a container on the bottom) and left them overnight to capture the mozzies when they are most active. We did this at two points in the summer, to see if there was any change over time.

We found that yes, the way we use land around a mangrove makes a difference. Mangroves with greater amounts of bushland and residential land in the surrounding area had fewer mosquitos, and fewer species of mosquitos. On the other hand, mangroves with greater amounts of industrial land surrounding them had a greater number of mosquito species, and those surrounded by greater amounts of mangrove had more mosquitos.

And, just to muddy the waters a bit more (pun intended), several of these relationships changed over time. These results show that although prediction based on the surrounding environment is a powerful technique for mangrove management, it is more complicated than we thought.

Another way forward: site-specific assessments

Our work suggests another way forward: site-specific assessments, measuring the mosquito community at a particular site in order to determine what management approaches need to be used. This is a daunting task; it requires a fair number of man-hours, and mangroves are not exactly an easy place to work. But it would be time well spent.

By assessing a site individually, managers can be confident that they are taking the best possible action for both the mangroves and the people nearby. It turns out that the best tool we have for striking a balance between environmental and public health concerns, the best tool we have for preserving and protecting, is information. In mangrove management—as in everything—knowledge is power.

Check out the abstract for our paper, Surrounding land use significantly influences adult mosquito abundance and species richness in urban mangroves, and follow the link to download from the journal, Wetlands Ecology and Management:

Mangroves harbor mosquitoes capable of transmitting human pathogens; consequently, urban mangrove management must strike a balance between conservation and minimizing public health risks. Land use may play a key role in shaping the mosquito community within urban mangroves through either species spillover or altering the abundance of mosquitoes associated with the mangrove. In this study, we explore the impact of land use within 500 m of urban mangroves on the abundance and diversity of adult mosquito populations. Carbon dioxide baited traps were used to sample host-seeking female mosquitoes around nine mangrove forest sites along the Parramatta River, Sydney, Australia. Specimens were identified to species and for each site, mosquito species abundance, species richness and diversity were calculated and were analyzed in linear mixed effects models. We found that the percentage of residential land and bushland in the surrounding area had a negative effect on mosquito abundance and species richness. Conversely, the amount of mangrove had a significant positive effect on mosquito abundance, and the amount of industrial land had a significant positive effect on species richness. These results demonstrate the need for site-specific investigations of mosquito communities associated with specific habitat types and the importance of considering surrounding land use in moderating local mosquito communities. A greater understanding of local land use and its influence on mosquito habitats could add substantially to the predictive power of disease risk models and assist local authorities develop policies for urban development and wetland rehabilitation.

Dr Suzi Claflin completed her PhD at Cornell University exploring environmental factors driving the spread of an aphid-borne potato virus on small-scale farms. She is now a postdoctoral research fellow at the Menzies Institute for Medical Research in Hobart, TAS. In her spare time she runs her own blog, Direct Transmission, focusing on disease and other public health issues (check it out here). To learn more about her doctoral research, follow this link!

Lessons from the dengue outbreak in Hawaii

Hawaii_1There are millions of cases of mosquito-borne disease world wide every year so why should we care about a few dozen dengue cases in Hawaii?

Hawaii is no stranger to dengue. There have been outbreaks first dating back to the 1840s. Travellers, including returning residents, are diagnosed with dengue routinely. However, this is the first outbreak of locally-acquired infection since 2011.

As of 17 November 2015, Hawaii Department of Health reports there have been approximately 65 locally acquired cases on Hawaii Island (aka Big Island) including both residents and visitors. Why has this happened and what lessons can be learned from the outbreak?

[update: As of 29 January 2016, there have been 242 confirmed cases of locally acquired dengue.]

Hawaii provides a fascinating example of the implications (as well as study of spread) of exotic mosquito invasions. With no endemic mosquito species, the pest species found in the Hawaiian islands have all been introduced from elsewhere.

The first mosquito to make it to Hawaii was Culex quinquefasciatus. It is thought to have arrived on a boat from Mexico in the mid 1820s. Interestingly, with no native mosquitoes in Hawaii, there was no word to describe them so they were initially referred to as “singing flies”.

In recent years, it has been the role of Culex quinquefasciatus in the spread of avian malaria that’s been grabbing the headlines. However, in the last few weeks, it has been Aedes aegypti and Aedes albopictus playing a role in the local spread of dengue virus in the spotlight. These two container-inhabiting mosquitoes are the key vectors of dengue viruses (as well as chikungunya, yellow fever and zika viruses) internationally. They’re driving the outbreak now as they have in the past.

There was an outbreak of dengue in 2001 with a total of 122 locally acquired cases. Cases were reported from Maui, Oahu and Kauai with the outbreak thought to have been triggered by travellers from French Polynesia where there was a major outbreak underway at the time. Between 1944 and 2001, the only cases of dengue reported in Hawaii were imported with travelers. Firstly, this highlights how important it is to understand the pathways of infected people, this can help guide assessments of risk.

This was also done from the potential introduction of West Nile virus into Hawaii. Analysing the movement of travelers from regions of endemic mosquito-borne disease has also been used to assess the risk of chikungunya virus introduction to North America.

It was believed that Aedes albopictus played an important role in this 2001 outbreak. This mosquito was not a significant presence in Hawaii until the 1940s. More importantly, Aedes albopictus is not exclusively found in water-holding containers in urban area. Unlike the other vector of dengue viruses, Aedes aegypti, Aedes albopictus is also found in bushland habitats. This makes mosquito control just a little more difficult when authorities need to look beyond the backyard.

Previous dengue outbreaks in Hawaii were thought to have been driven by Aedes aegypti. These outbreaks were significant with an estimated 30,000 cases in the early 1900s followed by approximately 1,500 cases around Honolulu in the period 1943-1944. While not necessarily easy to manage, outbreaks of dengue driven primarily by Aedes aegypti can be strategically targeted by residual insecticide treatments and community education. That education focuses on raising awareness of the public health risks associated with mosquitoes and the need to remove opportunities for mosquitoes to be breeding around dwellings. This model is essentially what is in place to address occasional outbreaks of dengue in Far North Queensland, Australia.

The current outbreak has raised concern in the community. Shelves of stores have been emptied of insecticides and repellents. Community meetings have been held by local authorities to provide information on dengue and address concerns on the Big Island. You can watch some of the meetings here. You can see some of the health promotion (aka “Fight the Bite”) flyers here.

Community engagement is important. An indirect impact of this engagement though is that the total number of confirmed cases of dengue on the Big Island is likely to rise over coming weeks. Not necessarily due to new cases but a greater likelihood that older cases will now be diagnosed through blood tests. Even those who may be suffering a mild illness are likely to be tested for infection and may end up in official statistics.

This dengue outbreak is a reminder to authorities across the world that where suitable mosquitoes are present, a risk of mosquito-borne disease outbreak is possible. The mosquitoes provide the tinder and it only takes the spark of an infected traveler to ignite an outbreak. We saw this in 2014 with the first outbreak of dengue in Japan for 70 years. We’ve seen it this year with local transmission of chikungunya virus in Spain and other outbreaks across Europe.

For Australian authorities, ensuring there are strategic responses in place to address the risk of exotic mosquito introduction, as well as outbreaks of disease, is critical. What this outbreak in Hawaii reminds us is that if Aedes albopictus becomes established in our major cities, it is only a matter of time before we see local outbreaks of dengue, chikungunya or Zika viruses.

What is it like if a loved one comes down with dengue? Check out the channel of YouTube stars Charles Trippy and Allie Wesenberg as they document their brush with mosquito-borne disease during this outbreak.

[Update: Implications for potential Zika virus spread] The recent spread of Zika virus in the Americas has raise concerns by health authorities. In particular, the spread of the virus to North America. What about Hawaii? There has already been one case of microcephaly in Hawaii with a baby born on Oahu to a mother who had been residing in Brazil. The pregnant women was infected in South America, not Hawaii. However, authorities should be on alert as travellers from the Americas, or the Pacific, have the potential to introduce the virus and the mosquitoes currently present in Hawaii spreading dengue viruses are the same that spread Zika virus.

 

 

 

 

 

 

 

Why would a Californian drought trigger an outbreak of mosquito-borne disease?

CalifornianBushfireSunset_DawnEllnerMosquitoes need water almost as much as they need blood so why is it a drought could cause an outbreak of mosquito-borne disease? Why does the drought in California mean less water but more mosquito-borne disease?

More than just water

All mosquitoes need water. It could be a teaspoon of water in a pot plant base or an expanse of wetlands inundated by tides. Following flooding, health authorities are typically quick to issue public health warnings about increased risk of mosquito-borne disease. However, more mosquitoes doesn’t always mean more mosquito-borne disease.

Mosquitoes need blood. As well as biting people, they also bite animals. Outbreaks of mosquito-borne disease typically requires the presence of wildlife, animals that act as reservoirs for the disease-causing viruses.

CaliforniaDrought_EPA

Drought is hitting California hard (Source EPA via Huffington Post)

Mosquitoes, drought and West Nile virus

West Nile virus is a mosquito-borne pathogen generally spread between birds and people by mosquitoes. Culex mosquitoes they appear to play the most important role in West Nile virus transmission in urban environments, particularly Culex pipiens.

These mosquitoes are generally not breeding in wetlands. They’re found in artificial structures ranging from backyard containers and neglected swimming pools to stormwater pipes and drains. These mosquitoes have moved out of the swamps and into the suburbs! They’ve also moved into the constructed wetlands popping up throughout the suburbs too.

Rather than water birds associated with wetland environments, the birds playing a key role in West Nile virus transmission are small songbirds common in urban areas. These birds roost in large numbers and are the target the the Culex mosquitoes that preferentially feed on birds. It is important to keep in mind that there is still a lot of learn about how the roosting behaviour of birds influences their exposure to West Nile virus.

During “dry” conditions, bird populations are concentrated in urban areas (where humans provide water and food) and mosquito populations associated with urban water-holding structures increase. During “wet” summers, bird populations may be more widely dispersed through the environment with many birds roosting and foraging well away from residential areas and reducing the contact between birds, mosquitoes and people. When the “dry” summers arrive, birds move back close to the people. People who provide water.

Culex_molestus_Photo_StephenDoggett

The Culex pipiens group of mosquitoes play an important role in the transmission of West Nile virus and are closely associated with urban environments. They like biting birds. (Photo: Stephen Doggett, NSW Health Pathology)

In the absence of rain, water stagnates in stormwater pipes and drains providing favourable conditions for mosquitoes. During “wet” summers, the mosquitoes are flushed out by increased water flows and, even if they don’t, permanent habitats are more likely to support populations of mosquito predators such as fish.

During “dry” summers, people also start storing water around the home. Once water restrictions kick in, the desire to keep the garden looking healthy can potentially pose an indirect health risk to the homeowner as they hoard water around the home that provides habitat for mosquitoes.

In short, dry conditions help concentrate mosquitoes and birds in close proximity to people and increase the risk of mosquito-borne disease outbreaks.

WestNileSign

Mosquito control in Texas in response to an outbreak of West Nile virus raised much concern within the community. It can sometimes be difficult to balance the need for mosquito control with community engagement to allay fears of insecticide -based human health risks (Source: CDC)

An outbreak in Texas in 2012

West Nile virus was first introduced into North America in 1999. Despite rapidly spreading across the continent in the subsequent years, the numbers of outbreaks steadily declined and, to some extent, it fell of the radar as a serious public health concern. There was a resurgence of the disease in 2012 with an outbreak primarily focused in Texas.

There was a substantial increase in the number of cases compared to previous years with an unusually warm spring thought to have played an important role in driving the outbreak. Health authorities were warned that outbreaks of this nature may continue.

USDroughtMonitors_7April2015West Nile virus and the Californian drought

For the past couple of years, California has been hit with one of its worst droughts in decades. It is having widespread impacts and may also be increasing mosquito-borne disease. Californian authorities have been battling potential public health risks associated with mosquitoes on many fronts. There were record numbers of deaths due to West Nile virus disease in 2014 and exotic mosquitoes were detected. This included an Australian mosquito that was found in Los Angeles.

It is relatively early in California’s mosquito season but West Nile virus has already been detected. Health authorities are warning that another bad year for West Nile virus activity could be ahead despite the ongoing drought. There is already a suggestion that the severity of the current drought may be exacerbated by climate change and that climate change may be playing a role in future West Nile virus risk internationally.

There is little doubt that prolonged drought will impact Californian residents in many ways and an increased risk of mosquito-borne disease is just one of them. Fortunately, mosquito and vector control agencies in California work closely with local health authorities to monitoring mosquito and pathogen activity to provide warnings of increased risk. However, there is responsibility for everyone to ensure that the ways in which water is conserved around the home doesn’t increase the risks associated with mosquitoes.

potplantsaucer

If you’re worried about keeping your pot plants well watered but don’t want to provide a home for mosquitoes, fill the saucer with sand. It will keep the moisture in place but there is no “free water” for mozzies to use!

If you’re not able to “dump and drain” water holding containers, make sure that they’re covered to stop mosquitoes getting in or out. If you’ve got a swimming pool that’s neglected, start chlorinating it or release fish to eat through any mosquitoes. There are also a few mosquito control products that could be used, the most appropriate would probably be the insect growth regulator methoprene, it will stop mosquitoes emerging from the water holding container.

Why not share your tips on saving water around the home while not increasing opportunities for mosquitoes on Twitter?

The photo at the top of this post is taken by Dawn Ellner (see original photo here)