Preserve and protect? Exploring mosquito communities in urban mangroves

homebushbay_mangroves_jan2016

This is a special guest post from Dr Suzi Claflin. Suzi found herself in Sydney, Australia, (via Cornell University, USA) in 2015 to undertake a research project investigating the role of urban landscapes in determining mosquito communities associated with urban mangroves. She was kind enough to put this post together to celebrate the publication of our research in Wetlands Ecology and Management!

**

Sometimes you’ve got to make hard choices for the greater good. These situations can arise anywhere, but here – as usual – we are concerned with mosquitoes. There’s a balancing act carried out by public health officials and wetland managers trying to both preserve endangered habitat and protect human health. In this guest post, I’ll explain the science behind research I recently published in collaboration with Dr Cameron Webb, and suggest one way forward for addressing human and environmental health concerns in urban wetlands.

During my PhD, I studied how the landscape surrounding small-scale farms affects the spread of a crop virus and the community of insect pests that carry it. When I came to Australia to work with Cameron, I was surprised to find myself applying the same type of landscape ecology to mosquitoes and mangroves in urban Sydney.

The misfortune of mangroves

Mangroves are real team players. They provide a range of services to the surrounding ecosystem and to the humans lucky enough to live near them. Mangroves are extremely effective at protecting the shoreline (but this can sometimes be a problem). They prevent erosion by gripping the soil in their complex root systems and buffer the beach by serving as a wave break. By filtering sediment out of the water that flows over them, mangroves also prevent their neighbouring ecosystems, such as coral reefs and seagrass forests, from being smothered.

Despite all their good work, mangroves have an almost fatal flaw; they prefer waterfront property. Unfortunately for them, so do humans. Urban and agricultural development has eaten away at mangroves, leaving them highly endangered.

The mosquito menace

Mozzies are a public health menace, because they spread human diseases like Ross River virus (RRV). Because of this, public health officials rightly spend time considering how to supress mosquito populations in order to reduce the risk of disease transmission.

Here’s where things get tricky: mangroves are great for mosquitoes.

That leaves public health officials and wetland managers in a difficult position. On the one hand, mangroves are delicate, at-risk ecosystems that need to be preserved. On the other, mangroves and surrounding habitats potentially harbor both the animal carriers of the RRV (e.g. wallabies) and a load of mosquitoes, which means that people nearby may need to be protected.

How can we do both?

 

claflin_mangroves

Dr Suzi Claflin trapping mosquitoes in the mangroves along the Parramatta River, Sydney, Australia.

 

The potential power of prediction

This is a hard question to answer. One approach is prediction: using measurements of the environment, like rainfall and tide level, to estimate what the mosquito community will look like in a given region. The mosquito community determines what management actions, like spraying an insecticide, need to be taken, based on the threat it poses to public health.

We set out to explore how the way we use land (e.g. for residential areas or industrial areas) near urban mangroves affects the mosquito communities that live in those mangroves. The project involved dropping over retaining walls, slipping down banks, and tromping through muddy mangroves along the Parramatta River in Sydney. We set mosquito traps (billy cans of dry ice with a container on the bottom) and left them overnight to capture the mozzies when they are most active. We did this at two points in the summer, to see if there was any change over time.

We found that yes, the way we use land around a mangrove makes a difference. Mangroves with greater amounts of bushland and residential land in the surrounding area had fewer mosquitos, and fewer species of mosquitos. On the other hand, mangroves with greater amounts of industrial land surrounding them had a greater number of mosquito species, and those surrounded by greater amounts of mangrove had more mosquitos.

And, just to muddy the waters a bit more (pun intended), several of these relationships changed over time. These results show that although prediction based on the surrounding environment is a powerful technique for mangrove management, it is more complicated than we thought.

Another way forward: site-specific assessments

Our work suggests another way forward: site-specific assessments, measuring the mosquito community at a particular site in order to determine what management approaches need to be used. This is a daunting task; it requires a fair number of man-hours, and mangroves are not exactly an easy place to work. But it would be time well spent.

By assessing a site individually, managers can be confident that they are taking the best possible action for both the mangroves and the people nearby. It turns out that the best tool we have for striking a balance between environmental and public health concerns, the best tool we have for preserving and protecting, is information. In mangrove management—as in everything—knowledge is power.

Check out the abstract for our paper, Surrounding land use significantly influences adult mosquito abundance and species richness in urban mangroves, and follow the link to download from the journal, Wetlands Ecology and Management:

Mangroves harbor mosquitoes capable of transmitting human pathogens; consequently, urban mangrove management must strike a balance between conservation and minimizing public health risks. Land use may play a key role in shaping the mosquito community within urban mangroves through either species spillover or altering the abundance of mosquitoes associated with the mangrove. In this study, we explore the impact of land use within 500 m of urban mangroves on the abundance and diversity of adult mosquito populations. Carbon dioxide baited traps were used to sample host-seeking female mosquitoes around nine mangrove forest sites along the Parramatta River, Sydney, Australia. Specimens were identified to species and for each site, mosquito species abundance, species richness and diversity were calculated and were analyzed in linear mixed effects models. We found that the percentage of residential land and bushland in the surrounding area had a negative effect on mosquito abundance and species richness. Conversely, the amount of mangrove had a significant positive effect on mosquito abundance, and the amount of industrial land had a significant positive effect on species richness. These results demonstrate the need for site-specific investigations of mosquito communities associated with specific habitat types and the importance of considering surrounding land use in moderating local mosquito communities. A greater understanding of local land use and its influence on mosquito habitats could add substantially to the predictive power of disease risk models and assist local authorities develop policies for urban development and wetland rehabilitation.

Dr Suzi Claflin completed her PhD at Cornell University exploring environmental factors driving the spread of an aphid-borne potato virus on small-scale farms. She is now a postdoctoral research fellow at the Menzies Institute for Medical Research in Hobart, TAS. In her spare time she runs her own blog, Direct Transmission, focusing on disease and other public health issues (check it out here). To learn more about her doctoral research, follow this link!

Should we start pulling out mangroves to save our wetlands?

mangroves_webb_SOPA_November2015

You have no idea how badly I wanted to jump down into the thick black mud.

I don’t remember much about primary school but I do have strong recollections of an assignment on the importance of mangroves to the ecology of the Parramatta River. Perhaps not the assignment itself, but I do remember Mum and Dad taking me down to the river and I drew some pictures of the twists and turns of branches and trunks and the finger-like pneumatophores punching up through the thick dark grey mud. It may only have been 10 minutes drive from home in Western Sydney but it was a glimpse into a world so strange and alluring, how could it not have made an impact on me?

I remember the great disappointment of my parent’s stern words keeping me from jumping down below the high water mark and into the mud. The same feelings of frustration and disappointment when stopped from doing other fun things like playing in stormwater drains, letting off firecrackers or swimming in rips!

Mangroves don’t just attract the attention of young environmental scientists. Exploiting a unique place between the land and sea, mangroves have intrigued and fascinated many before me with the first descriptions, by Greek mariners, thought to date back to 325BC. What were these plants that seemed to defy logic, growing half submerged in salty water?

Almost thirty years after my primary school assignment, with sandshoes replaced by gumboots, that childhood disappointment of adventure squashed is now matched by the realisation that mangroves aren’t perfect. In fact, they’re a threat to some of the other plants and animals found in our local local estuaries.

Now I spend most of my summer coated in that same dark grey mud, covered in mosquito bites and thinking about how important mangrove management will be for the future of our coastal wetlands.

mangroves_duckcreek

More than mangroves

There is little doubt mangroves are an ecologically important habitat. They provide a home for a wide range of creatures, from bacteria to birds. Rich in nutrients and hiding places, mangroves are perfect nurseries for fish and crustaceans. Bird and bats and rodents and reptiles all find a home here too.

They’re threatened by climate change but they may also play a critical role in protecting our shoreline against sea level rise and storm surges. Sea level rise itself may knock out mangrove forests too but mangroves could also mitigate the impacts of climate change by storing carbon. In fact, the role estuarine wetlands may play in keeping carbon dioxide out of the atmosphere could be critical.

Make no mistake, mangroves are important. Thing is, it is also important to also remember that estuarine wetlands are more than just mangroves.

When we talk about estuarine wetlands, we’re grouping together a number of habitats that  include seagrass, saltmarsh, sedgelands and mudflats as well as mangroves. Each of these habitats play an important role in the functioning of the estuary as a whole but they each, individually, provide something specific to the wildlife that utilise the wetlands.

darkmangroves

Saltmarshes are critically important and are in desperate need of conservation. In NSW they’re listed as Endangered Ecological Communities. As well as urbanisation and pollution, a changing climate and sea level rise risk severely degrading the quality of these habitats.

One of the key threats facing saltmarshes is a native plant. A native estuarine wetland plant. Mangroves.

The encroachment of mangroves into saltmashes is a serious problem. This is happening in many parts of the world. It is a strange situation in which one native plant is taking over another and with these ecological shifts, there are knock-on effects to other components of the wetland ecosystem. Most importantly, nesting and feeding shorebirds.

saltmarsh_SOPA

Are mangroves really a threat?

The mangroves are just doing what mangroves do. The reason they’re threatening saltmarshes is due to our modification of local environments.

Urban runoff reduces the salinity of these wetlands and this reduced salinity not only removes the ecological advantages of salt-tolerent saltmarsh plants, such as Sarcocornia quinqueflora and Sporobolus virginicus, but it helps mangrove seeds and seedlings survive the otherwise harsh environmental conditions of saltmarshes. Lower the salinity, increase the invasive potential of mangroves.

Frequent dryness and highly salty conditions are a saltmarsh’s best defense against invading mangroves.

Filling in wetlands and the construction of seawalls, roadways and other infrastructure give saltmarshes little refuge or respite from these threats. While mangroves encroach from the sea, there is nowhere for saltmarshes to migrate to when dealing with sea level rise.

They’re cornered and under attack but even where the plants are persisting, the quality of habitat they provide for local wildlife is slowly degraded by colonising mangrove seedlings.

Blackwingedstilt_henandchickenbay_1september2015

There are many waterbirds that use our local estuaries that are under threat. Saltmarshes are great habitats for migratory shorebirds. There are plentiful resources in the form of insects and other invertebrates within the sediments. The birds can nest on the marsh and as they can see all around, predators are easy to spot. They feel safe.

There have been declines in the White-fronted Chat populations around Sydney. Many other populations of wading birds associated with Australia’s coastal wetlands are in decline too. Mangrove invasion isn’t the only thing to blame but it is an issue that needs to be addressed.

For many of these birds, the encroachment of mangroves into mudflats and saltmarshes is a problem. Its a problem for their foraging and nesting. Once mangrove seedlings start popping up on the middle of the saltmarsh, all those advantages of a wide open habitat in which predators are easy to spot are lost.

Imagine you’re a black-winged stilt. You’re trying to find a safe place to nest. A perfect place would be a raised area of saltmarsh surrounded by water. A dead flat saltmarsh with clear lines of sight for dozens of meters around. You’ll be able to see an approaching predator (like a fox or a feral cat) from far enough way to escape with plenty of time to spare. Now, stick a few mangrove seedlings here and there. They start to obscure your view. They’ll give sneaky predators a place to hide. Even if there are not predators about, you’ll probably get nervous. You’ll probably spend more time thinking about the threat of predators and less time foraging for food.

As mangroves move in, the birds will leave. Long before the saltmarsh is over run by mangroves, out-competed by the shade of establishing young mangroves, the quality of the habitat for many shorebirds will have already been lost. There may be some plants remaining but the ecological role of the habitat is gone.

Parramatta_ConradMartens

Do historic paintings provide conflicting evidence to the commonly held view that mangroves have always been present along the Parramatta River? (Parramatta River, c. 1837, Conrad Martens (1801-78) via Australian Art Auctions)

Painting the picture of change in the local wetlands

How can we predict what will happen in the future if we haven’t learned from the past?

Tracking change in these wetlands is important. The use of photography has played an important role in tracking environmental change for a long time. Aerial photography and satellite imagery have helped reveal dramatic changes in vegetation associated with Australia’s coastal wetlands. This analysis has demonstrated the encroachment of mangroves into saltmarshes and this encroachment is considered a key threatening process of this endangered ecological community.

How can we track the encroachment of mangroves? While technology has helped reveal current changes in mangrove encroachment, other uses of imagery can explore relatively recent “urban myths” about historic mangrove distribution.

Thinking back to that school assignment, I remember being told how important mangroves were to the local environment. We we taught that, here in Sydney, that mangroves were always part of the Parramatta River estuary, that they have alwasy been a critical component of the river’s ecology. Was this really the case?

There has been some brilliant detective work done to determine the historic distribution of mangroves along the Parramatta River in this paper titled “Estuarine wetlands distribution along the Parramatta River, Sydney, 1788–1940: implications for planning and conservation“. The authors have used old photos and, in particular, some of the earliest paintings from the Sydney region (together with notes from settlers at the time) and found that the estuary was dominated by mudflats and saltmarsh habitats and that extensive areas of mangroves did not occur until the 20th Century.

To quote the author, Lynette C. McLoughlin:

“These historical sources indicate that in the 19th century extensive mudflats and saltmarsh communities dominated the inter-tidal zone, with mangroves more limited to creek fringes and some patches in bays for much of the period. In the upper river from Subiaco Creek to Parramatta, there is no evidence for the presence of mangroves until the 1870s. Following settlement and increased sedimentation, inter-tidal mudflats expanded, mangroves colonised up river and out onto mudflats in bays in the latter part of the 19th century, followed by expansion into saltmarsh in the 20th century.”

It is only relatively recently that mangroves have really flourished along the river.

There is absolutely no doubt they were always present, tucked away in the tiny bays and inlets of what became known as Sydney Harbour but it was the mudflats and saltmarshes that dominated much of the estuary. These habitats, no doubt, provided a rich and productive habitat for shorebirds and other wildlife.

mangroves_Dec2015_HenandChickenBay

So, where to from here?

Globally, mangroves are a critical component of wetland ecosystems. There is little doubt of that, and little doubt that in many parts of the world, even here in Australia, they are under threat. But so is saltmarsh and, saltmarsh is far less likely to be given the chance to demonstrate the resilience that mangroves will to continued changed environmental conditions results from a rising sea level and surging urbanisation.

Not just saltmarsh but mudlfats too.

Coastal authorities are increasingly aware of the need to balance protection of mangrove forests and the benefits they provide but also the conservation of saltmarsh and mudflats that are so critical to shorebirds.

The reality is, there will need to be a program of mangrove culling to sustain conservation of saltmarsh habitat. You need a permit to remove mangrove seedlings but a seasonal program of removal would be greatly beneficial in stopped the spread of mangroves into saltmarsh habitats. Local authorities are incorporating mangrove removal programs in their local wetland rehabilitation programs.

Removing young seedlings is easy, you can pull them straight out of the wet mud. Wouldn’t take much to organise a team of volunteers to move through the local saltmarsh removing seedlings. Perhaps in Autumn when the migratory shorebirds have left and the mosquito populations aren’t so bad?

The idea that native vegetation should be actively removed from habitats sounds at odds with environmental conservation. However, we need to maintain our wetlands for our future generations and the next generations of birds, and fish and crustaceans that rely on them now where few other opportunities exist.

mangrove_boardwalk_Jan2016

2 February is World Wetlands Day. Please get out into your local wetlands, or at least make a pledge to visit your nearby wetlands sometime soon.

Learn more about Australia’s amazing mangroves by dropping by MangroveWatch and picking up the excellent Australia’s Mangroves by Norm Duke. There is also an extremely useful text on Australian Saltmarshes that is essential.

Finally, check out one of the most extensive resources on urban wetland management, including estuarine wetlands, via the free eBook produced by the Sydney Olympic Park Authority titled “Workbook for Managing Urban Wetlands in Australia“. Read a brief article on our analysis of the use of this resource in the latest issue of Wetlands Australia, see “Insights from the use of an online wetland management resource” by Webb and Paul (pages 26-27).

What are you doing for World Wetlands Day? Join the conversation on Twitter!

Want to learn more about the amazing world of Australian mosquitoes? Check out “A Field Guide to Mosquitoes of Australia” out now through CSIRO Publishing. Over 200 pages containing a pictorial guide to almost 100 different mosquitoes along with tips on beating their bite and protecting your family from the health risks of mosquitoes. You can order online or through your favourite local bookstore or online retailer.

 

Lessons from the dengue outbreak in Hawaii

Hawaii_1There are millions of cases of mosquito-borne disease world wide every year so why should we care about a few dozen dengue cases in Hawaii?

Hawaii is no stranger to dengue. There have been outbreaks first dating back to the 1840s. Travellers, including returning residents, are diagnosed with dengue routinely. However, this is the first outbreak of locally-acquired infection since 2011.

As of 17 November 2015, Hawaii Department of Health reports there have been approximately 65 locally acquired cases on Hawaii Island (aka Big Island) including both residents and visitors. Why has this happened and what lessons can be learned from the outbreak?

[update: As of 29 January 2016, there have been 242 confirmed cases of locally acquired dengue.]

Hawaii provides a fascinating example of the implications (as well as study of spread) of exotic mosquito invasions. With no endemic mosquito species, the pest species found in the Hawaiian islands have all been introduced from elsewhere.

The first mosquito to make it to Hawaii was Culex quinquefasciatus. It is thought to have arrived on a boat from Mexico in the mid 1820s. Interestingly, with no native mosquitoes in Hawaii, there was no word to describe them so they were initially referred to as “singing flies”.

In recent years, it has been the role of Culex quinquefasciatus in the spread of avian malaria that’s been grabbing the headlines. However, in the last few weeks, it has been Aedes aegypti and Aedes albopictus playing a role in the local spread of dengue virus in the spotlight. These two container-inhabiting mosquitoes are the key vectors of dengue viruses (as well as chikungunya, yellow fever and zika viruses) internationally. They’re driving the outbreak now as they have in the past.

There was an outbreak of dengue in 2001 with a total of 122 locally acquired cases. Cases were reported from Maui, Oahu and Kauai with the outbreak thought to have been triggered by travellers from French Polynesia where there was a major outbreak underway at the time. Between 1944 and 2001, the only cases of dengue reported in Hawaii were imported with travelers. Firstly, this highlights how important it is to understand the pathways of infected people, this can help guide assessments of risk.

This was also done from the potential introduction of West Nile virus into Hawaii. Analysing the movement of travelers from regions of endemic mosquito-borne disease has also been used to assess the risk of chikungunya virus introduction to North America.

It was believed that Aedes albopictus played an important role in this 2001 outbreak. This mosquito was not a significant presence in Hawaii until the 1940s. More importantly, Aedes albopictus is not exclusively found in water-holding containers in urban area. Unlike the other vector of dengue viruses, Aedes aegypti, Aedes albopictus is also found in bushland habitats. This makes mosquito control just a little more difficult when authorities need to look beyond the backyard.

Previous dengue outbreaks in Hawaii were thought to have been driven by Aedes aegypti. These outbreaks were significant with an estimated 30,000 cases in the early 1900s followed by approximately 1,500 cases around Honolulu in the period 1943-1944. While not necessarily easy to manage, outbreaks of dengue driven primarily by Aedes aegypti can be strategically targeted by residual insecticide treatments and community education. That education focuses on raising awareness of the public health risks associated with mosquitoes and the need to remove opportunities for mosquitoes to be breeding around dwellings. This model is essentially what is in place to address occasional outbreaks of dengue in Far North Queensland, Australia.

The current outbreak has raised concern in the community. Shelves of stores have been emptied of insecticides and repellents. Community meetings have been held by local authorities to provide information on dengue and address concerns on the Big Island. You can watch some of the meetings here. You can see some of the health promotion (aka “Fight the Bite”) flyers here.

Community engagement is important. An indirect impact of this engagement though is that the total number of confirmed cases of dengue on the Big Island is likely to rise over coming weeks. Not necessarily due to new cases but a greater likelihood that older cases will now be diagnosed through blood tests. Even those who may be suffering a mild illness are likely to be tested for infection and may end up in official statistics.

This dengue outbreak is a reminder to authorities across the world that where suitable mosquitoes are present, a risk of mosquito-borne disease outbreak is possible. The mosquitoes provide the tinder and it only takes the spark of an infected traveler to ignite an outbreak. We saw this in 2014 with the first outbreak of dengue in Japan for 70 years. We’ve seen it this year with local transmission of chikungunya virus in Spain and other outbreaks across Europe.

For Australian authorities, ensuring there are strategic responses in place to address the risk of exotic mosquito introduction, as well as outbreaks of disease, is critical. What this outbreak in Hawaii reminds us is that if Aedes albopictus becomes established in our major cities, it is only a matter of time before we see local outbreaks of dengue, chikungunya or Zika viruses.

What is it like if a loved one comes down with dengue? Check out the channel of YouTube stars Charles Trippy and Allie Wesenberg as they document their brush with mosquito-borne disease during this outbreak.

[Update: Implications for potential Zika virus spread] The recent spread of Zika virus in the Americas has raise concerns by health authorities. In particular, the spread of the virus to North America. What about Hawaii? There has already been one case of microcephaly in Hawaii with a baby born on Oahu to a mother who had been residing in Brazil. The pregnant women was infected in South America, not Hawaii. However, authorities should be on alert as travellers from the Americas, or the Pacific, have the potential to introduce the virus and the mosquitoes currently present in Hawaii spreading dengue viruses are the same that spread Zika virus.

 

 

 

 

 

 

 

Putting a value on science communication

For many scientists, communicating the ideas that underpin their areas of expertise to the public and policy makers is critical. Sharing the findings of research could make a difference to people’s lives, even if it is just to increase their appreciate of science and the world around them. But how do we value the communication of science by scientists?

Scientists often bemoan the lack of acknowledgment of their scientific communications and community engagement efforts. There is little doubt that these “outreach” activities receive far less “academic credit” than publication in high impact journals.

Writing for “popular science” outlets is often perceived to be a career negative. While some argue there needs to be capacity for the community engagement efforts of scientists to be acknowledged in the assessment of academic accomplishment, others argue against it. Regardless of your motivations, if you’re going to engage in science communication, it is best to make the most of your activities but even when your research goes vial, how can you put a value on this?

How can you value your science communications in a way that may be recognised for employment, promotion, grant applications etc?

repellentbandOne of my recent articles for The Conversation, why mosquitoes seem to bite some people more, went a little bit viral. Almost 1.3 million people clicked on that article. Would I swap it for an article in Nature (or any other scholarly publication with a high impact factor) that only 20 people read? Probably as it would make a far more valuable contribution to my career…but would it have the same potential to change people’s awareness and behaviour in avoiding mosquito bites? Probably not.

I’ve written before about the importance of social media in getting the public health messages informed by my research out to the public. A blog post I wrote about the shortcomings of mosquito repellent wrist bands in protecting people against mosquito bites is the most read post on my blog. Since first published, the article “Do mosquito repellent wrist bands work?” has been read by around 47,000 people. The original paper, published in a journal without an impact factor, may have been read by only dozens of people if I hadn’t written about it on my blog.

repellents2

I’m increasingly asked to provide evidence of “engagement” or “translation” activities associated with my research. This is particularly the case for my activities with Centre for infectious Disease and Microbiology Public Health where translating research for improved public health outcomes is a key objective. Those outcomes have generally been focused on providing informed guidance to local authorities on infectious disease surveillance, diagnosis and treatment.

What about community engagement?

I wanted to share how I’ve been trying to value my science communication activities in recent years. My general approach to this is to document as much detail as possible about individual activities, try to quantify the reach of activities (as much as possible) and to try to use my experience with these activities into what could be best described as my “core” activities.

In the same way you may incorporate a new laboratory technique or statistical analysis into your research, why not incorporate your science communication activities similarly?

Webb_NineNews_March2015

Every summer I find myself standing in the mangroves talking to a camera (while being bitten by mosquitoes)

Media activities

In the summer past, I’ve been interviewed about 50 times on research findings, disease outbreaks and topical issues associated with mosquitoes and mosquito-borne disease. This level of activity clearly holds the potential to engage the wider community with important public health messages as well as (hopefully) improve their understanding of local scientists and their research.

While keeping a track of the interviews and their details (date, topic, journalist, outlet etc) is handy, it is also possible to go beyond that to record audience reach and assign a relative value. This is where you’ll need the help of your institute’s media and communications unit. They should be able to obtain reports from media monitoring organisations that keep track of details (interview summary points and duration, audience size, estimated value) associated with media activities.

For example, on 16 January 2015 I did a live cross to Channel 7’s Sunrise program. The interview ran for just over 3 minutes, issues about mosquito-borne disease risk and personal protection measures were covered, it had an estimated audience of over 500,000 and was valued at around $200,000.

Over the course of a year (or perhaps a research project), it is possible to assign both a financial and engagement value? For me, the media activities over the 2014-2015 summer had an estimate audience of around 8 million and value of over $600,000. This extra level of detail adds so much extra weight to the value of science communications activities.

mosquitobites_magazines

Mosquito Bites is the bulletin of the Mosquito Control Association of Australia. Distributed to members throughout Australia and many other countries, it provides information on the operational aspects of mosquito and mosquito-borne disease management.

Popular science writing

I regularly contribute articles to non-scholarly publications, these include newsletters, bulletins and magazines produced by local community groups, industry bodies and scientific associations. As well as recording the specific details about each article, it is also possible to record circulation as a measure of engagement.

If you need to add a financial value to these articles, why not consider what the current rates are for freelance journalists? They seem to be around $0.40-1.00 per word, that makes any (non-scholarly journal) writing associated with research projects as an “in kind” contribution valued at around $500-600? Planning on writing an article associated with an upcoming research project, why not include this extra value as an “in kind” contribution?

I regularly write for The Conversation. The website provides excellent data on the readership of individual articles (including with respect to other contributors from your institution) in addition to republication and social network sharing. Most of my articles receive around 6,000-8,000 reads but many have also reached around 20,000. Again, this is typically substantially greater exposure than received by my articles in scholarly journals. Recording this additional information would help make a handy argument that non-academic writing holds value, especially when arguing about research translation.

Output from @mozziebites Twitter Analytics for February 2015

Output from @mozziebites Twitter Analytics for February 2015 showing data on impressions and engagement with my Tweets during the month.

Social media activity

Got a Twitter account or Facebook page? It is obviously great to keep track of your follower numbers, retweets, likes and shares of tweets and posts. It is a way to demonstrate engagement with the community. I started tracking my activity on Twitter early on. I was partly interested in whether people would engage with tweets about mozzies but I also wanted to demonstrate to my “bosses” that using social media for “work purposes” had some benefits in line with the public health objectives of my research activities. There was also a very nice paper published in 2012 that provided a framework for assessing the engagement of health authorities with social media and I wanted to gather similar data.

For Twitter users, you can access data on your own account via Twitter Analytics. It provides plenty of useful information, especially engagements (i.e. total number of times a user interacted with a Tweet, including retweets, replies, follows, favorites, links, cards, hashtags, embedded media, username, profile photo, or Tweet expansion), impressions (i.e. times a user is served a Tweet in timeline or search results) and link clicks (i.e. clicks on a URL in the Tweet). This kind of data can help demonstrate the extent to which the online community is interacting with your own social media activity.

It will also help if you engage with your institution on social media. Help promote their activities and those of your colleagues and collaborators. In turn they’ll help raise your profile too.

ABCOpenDay_ParramattaPark_WebbGiggle

Speaking at public events provides opportunities to meet a wide cross section of the community….even celebrities such as Jimmy Giggle at the ABC community event at Parramatta Park, April 2014.

Community presentations

Every year i speak at a range of community events. In the past year or so I’ve spoken at such diverse events as Sydney Olympic Park Authority’s Life in the Park, Australian Skeptics in the Pub, Cumberland Birds Observer’s Cub meeting, Oatley Flora and Fauna Conservation Society meeting and Pint of Science. This provides an opportunity to speak to a wide cross section of the community but is also an opportunity to document experience in communicating to different audiences.

As well as keeping track of these speaking engagements (date, title, location, hosting organisation), I also try to record the number of attendees and most of the time I make a note of questions asked. This, again, is a way to document engagement/translation of research. It can also form a foundation for how you may shape research, it has particularly been the case for me reviewing the way we share public health information relating to the promotion of insect repellent use.

Communications and publications

Finally, think about ways you can parlay your experience with science communication into output that’s recognised by your organisation or institute. Why not write a perspectives piece, commentary or letter to the editor? I’m regularly seeing articles popping up in peer reviewed journals explaining the benefits of using social media, why not target a journal within your field that may not have covered the topic. You only need to see the metrics on this paper, ‘An Introduction to Social Media for Scientists‘, to realise that there is plenty of interest and having an extra journal article under your belt won’t hurt either.

Similarly, if you’re being asked to speak at conferences and workshops on your use of social media and/or science communication strategies, make sure you’re recording all those details too.

To conclude, there may not (yet) be a magic number to assign to your science communications activity in the same way impact factors and altmetrics help measure the success of traditional academic output. However, that doesn’t mean you cannot record a bunch of “metrics” associated with science communications, both online and off, that will hopefully better place you for that next job offer or promotion.

What do you think? How do you document your scientific communications activities? Join the conversation on Twitter.

Are mosquito coils making us sick?

coilWe burn them to beat the bite of mosquitoes but could they actually be making us sick? Is breathing the smoke from a smouldering mosquito coil really the same as smoking a pack of cigarettes?

In summary, should I use mosquito coils to protect my family from mosquito bites?

  • Only use commercial products that have been registered by local authorities
  • Products that contain pyrethroids will provide better protection from mosquitoes than those that contain only botanical extracts
  • The byproducts of combustion, not insecticides, associated with mosquito coils may pose a health risk in some circumstances
  • Best to limit use of coils to outdoor or well ventilated indoor areas
  • Don’t sleep next to a smouldering mosquito coil
  • Consider plug-in “smokeless” mosquito repellent devices
  • Sleeping under a mosquito net is the best non-chemical approach to overnight mosquito bite prevention
The Saltmarsh Mosquito (Aedes vigilax) (Photo: Stephen Doggett)

The Saltmarsh Mosquito (Aedes vigilax) (Photo: Stephen Doggett)

Here is the background…

For centuries we’ve burnt substances, particularly aromatic plants, to keep mosquitoes away. The clouds of smelly smoke can often ward off the swarms of blood sucking mosquitoes.

The use of pyrethrum in incense gained popularity and became common practice in Asia but it wasn’t until the early 1900s that the mosquito coil was born thanks to Japanese entrepreneurs Eiichiro and Yuki Ueyama and their katori senkō (mosquito-killing incense).

Modern mosquito coils, mostly containing the pyrethroid insecticides, are an almost permanent fixture at camp sites and backyard during summer. Millions of families across the tropics use them as their primary source of mosquito-borne disease prevention. They’re cheap and generally effective. We burn them to reduce the risks of mosquito-borne disease but could they actually be making us sick?

Health concerns of mosquito coils

There is growing concern about the adverse health impacts associated with the burning of mosquito coils and sticks indoors. A recently presentation to the 48th National Conference of Indian College of Allergy, Asthma and Applied Immunology has again raised the issue of potential health impacts associated with mosquito coils with media coverage given to Dr Sundeep Salvi in the lead up to the conference. He is quoted as saying “Burning one mosquito coil in a closed room amounts to smoking roughly 100 cigarettes”. The key point in Dr Salvi’s comment is “closed room”.

When assessing the real risks posed by mosquito coils, it is important to consider not just what is released by these smouldering products but actual likelihood it poses a serious health risk. How do you balance these potential health risks of burning coils with those posed by the bite of infected mosquitoes?

Total daily rainfall recorded at Sydney Olympic Park (Data source Bureau of Meteorology)

Do you really need to weigh up the risks of breathing in smoke from a mosquito coil with the risks of mosquito bites? (Image: Joel Sartore, National Geographic)

Who checks the safety of mosquito coils?

In Australia, all substances that purport to kill or repel mosquitoes must be registered by the Australian Pesticides and Veterinary Medicines Authority (APVMA). Similar regulatory authorities exist in other jurisdictions.

Mosquito repellents, whether they’re topical or spatial or whether they contain “chemical” or “natural” substances will need to be tested for efficacy and safety. Check the packaging for a registration number. There are dozens of different variations on “mosquito coils” including sticks, coils, candles and a variety of “plug in” devices. You’ll find the shelves of the local supermarket, camping and hardware store fully stocked almost all year round!

Despite the wide range of products available, the active ingredients (that is the mosquito repelling or killing products) don’t vary too much. There are either synthetic pyrethroids or botanical extracts (e.g. citronella oil, eucalytpus oil). You may be surprised to know that some contain a combination of the two. Just because “citronella” is written in bold on the packaging, it may still contain one of the synthetic pyrethroids. Check the label.

repellentrackDoes burning mosquito coils really make us sick?

A study of mosquito coils sold in the U.S. and found that some mosquito coils contain octachlorodipropyl ether (s-2) that, during the smouldering of the coils, produces an extremely potent lung carcinogen as a byproduct called (bis(chloromethyl)ether (BCME)). Fortunately, s-2 is banned in many countries. It is no longer used commercially in the U.S. and prompted by reports of the risks associated with mosquito coils, Hong Kong authorities released a statement in 2005 regarding the recall of mosquito coils containing s-2.

It is not listed as an active ingredient in mosquito coils registered for use in Australia. Given that in most circumstances, particularly in Australia, mosquito coils don’t contain s-2, it is the particulate matter that is of greatest concern.

An often quoted study published in 2003 titled “Mosquito coil emissions and health implications” analysed the components of commercially available mosquito coils from China and Malaysia and found that burning mosquito coils in an enclosed room may pose “significant acute and chronic health risks” with the fine and ultra fine particulate matter released from a single mosquito coil equaling that of up to 137 cigarettes!

In addition, they found that emission of formaldehyde (a by product of the combustion process) from burning one coil can be as high as that released from burning 51 cigarettes.

Doesn’t sound too good does it? The combustion of the coil itself is the main concern, not the insecticides used.

More recent studies have indicated that changing the base materials used in mosquito coils (i.e. switching to charcoal from other organic material) can reduce the volume of particulate matter substantially. Would these “smokeless” mosquitoes be more “healthy”? Probably.

Does what happens in the lab stays in the lab?

Billions of mosquito coils are sold across Asia every year. Millions of families use them as their primary mosquito bite prevention strategy. Why aren’t we seeing more substantial health impacts in local communities?

It is worth noting that two papers published in 2006 investigated the different methods used to assess the health risks associated with burning mosquito coils. The researchers tested different methods to expose laboratory rats to particulate matter from mosquito coils. They firstly reported that “protocols devised evaluate and assess the acute inhalation toxicity of mosquito coil smoke demonstrating that the nose-only mode of exposure of rats to the smoke of mosquito coils is suitable to assess the toxic potency of different coils.

The nose-only mode has clear advantages over the whole-body exposure mode.” Then, using the “nose-only” exposure method that they proposed, the researchers concluded that “overnight exposure to the smoke from burning mosquito coils (manufactured in Indonesia) is unlikely to be associated with any unreasonable health risk.” This is a noteworthy conclusion given that the level of exposure to those rats (6 h a day, 5 days a week for 13 weeks) was substantial.

What about “smokeless” mosquito coils?

There is a paucity of studies investigating the potential human health impacts of “smokeless” mosquito repellents. The few studies that do exist are inconclusive or use animals to test health impacts under conditions unlikely to occur in most circumstances.

A 2005 review of pyrethroid poisoning reported “Despite their extensive world-wide use, there are relatively few reports of human pyrethroid poisoning. Less than ten deaths have been reported from ingestion or following occupational exposure. Occupationally, the main route of pyrethroid absorption is through the skin. Inhalation is much less important but increases when pyrethroids are used in confined spaces.” Again, this highlights the critical issue here, exposure to insecticides in confined and/or enclosed situations.

It is worth remembering that pyrethroids are over 2000 times more toxic to insects than mammals. That means that the concentrations used to kill insects are unlikely to have adverse health impacts on humans, particularly if commercial formulations are used as recommended. Given the billions of people who use mosquito coils to prevent mosquito bites, perhaps the more important question to ask is, does burning mosquito coils actually prevent mosquito-borne disease? Perhaps that is a discussion for another time….

sp-breweries-mozzie-boxPerhaps one of the most interesting ideas this year was the “mosquito repellent beer carton”. More marketing than public health initiative but I like the idea. The carton is infused with citronella so that when you’re sitting about the campfire enjoying a few beers, you can toss bits of the carton into the fire and keep mosquitoes away. It is unlikely many mosquitoes will be actively repelled. However, I do like the idea of using the beer carton as an opportunity to raise awareness of mosquito-borne disease.

Perhaps it is this little bit of public health communication that will actually stop a few people becoming infected.

Do you use mosquito coils and sticks to prevent mosquito bites? Join the conversation on Twitter and let me know what you think.

Want to learn more about the amazing world of Australian mosquitoes? Check out “A Field Guide to Mosquitoes of Australia” out now through CSIRO Publishing. Over 200 pages containing a pictorial guide to almost 100 different mosquitoes along with tips on beating their bite and protecting your family from the health risks of mosquitoes. You can order online or through your favourite local bookstore or online retailer.

Why would a Californian drought trigger an outbreak of mosquito-borne disease?

CalifornianBushfireSunset_DawnEllnerMosquitoes need water almost as much as they need blood so why is it a drought could cause an outbreak of mosquito-borne disease? Why does the drought in California mean less water but more mosquito-borne disease?

More than just water

All mosquitoes need water. It could be a teaspoon of water in a pot plant base or an expanse of wetlands inundated by tides. Following flooding, health authorities are typically quick to issue public health warnings about increased risk of mosquito-borne disease. However, more mosquitoes doesn’t always mean more mosquito-borne disease.

Mosquitoes need blood. As well as biting people, they also bite animals. Outbreaks of mosquito-borne disease typically requires the presence of wildlife, animals that act as reservoirs for the disease-causing viruses.

CaliforniaDrought_EPA

Drought is hitting California hard (Source EPA via Huffington Post)

Mosquitoes, drought and West Nile virus

West Nile virus is a mosquito-borne pathogen generally spread between birds and people by mosquitoes. Culex mosquitoes they appear to play the most important role in West Nile virus transmission in urban environments, particularly Culex pipiens.

These mosquitoes are generally not breeding in wetlands. They’re found in artificial structures ranging from backyard containers and neglected swimming pools to stormwater pipes and drains. These mosquitoes have moved out of the swamps and into the suburbs! They’ve also moved into the constructed wetlands popping up throughout the suburbs too.

Rather than water birds associated with wetland environments, the birds playing a key role in West Nile virus transmission are small songbirds common in urban areas. These birds roost in large numbers and are the target the the Culex mosquitoes that preferentially feed on birds. It is important to keep in mind that there is still a lot of learn about how the roosting behaviour of birds influences their exposure to West Nile virus.

During “dry” conditions, bird populations are concentrated in urban areas (where humans provide water and food) and mosquito populations associated with urban water-holding structures increase. During “wet” summers, bird populations may be more widely dispersed through the environment with many birds roosting and foraging well away from residential areas and reducing the contact between birds, mosquitoes and people. When the “dry” summers arrive, birds move back close to the people. People who provide water.

Culex_molestus_Photo_StephenDoggett

The Culex pipiens group of mosquitoes play an important role in the transmission of West Nile virus and are closely associated with urban environments. They like biting birds. (Photo: Stephen Doggett, NSW Health Pathology)

In the absence of rain, water stagnates in stormwater pipes and drains providing favourable conditions for mosquitoes. During “wet” summers, the mosquitoes are flushed out by increased water flows and, even if they don’t, permanent habitats are more likely to support populations of mosquito predators such as fish.

During “dry” summers, people also start storing water around the home. Once water restrictions kick in, the desire to keep the garden looking healthy can potentially pose an indirect health risk to the homeowner as they hoard water around the home that provides habitat for mosquitoes.

In short, dry conditions help concentrate mosquitoes and birds in close proximity to people and increase the risk of mosquito-borne disease outbreaks.

WestNileSign

Mosquito control in Texas in response to an outbreak of West Nile virus raised much concern within the community. It can sometimes be difficult to balance the need for mosquito control with community engagement to allay fears of insecticide -based human health risks (Source: CDC)

An outbreak in Texas in 2012

West Nile virus was first introduced into North America in 1999. Despite rapidly spreading across the continent in the subsequent years, the numbers of outbreaks steadily declined and, to some extent, it fell of the radar as a serious public health concern. There was a resurgence of the disease in 2012 with an outbreak primarily focused in Texas.

There was a substantial increase in the number of cases compared to previous years with an unusually warm spring thought to have played an important role in driving the outbreak. Health authorities were warned that outbreaks of this nature may continue.

USDroughtMonitors_7April2015West Nile virus and the Californian drought

For the past couple of years, California has been hit with one of its worst droughts in decades. It is having widespread impacts and may also be increasing mosquito-borne disease. Californian authorities have been battling potential public health risks associated with mosquitoes on many fronts. There were record numbers of deaths due to West Nile virus disease in 2014 and exotic mosquitoes were detected. This included an Australian mosquito that was found in Los Angeles.

It is relatively early in California’s mosquito season but West Nile virus has already been detected. Health authorities are warning that another bad year for West Nile virus activity could be ahead despite the ongoing drought. There is already a suggestion that the severity of the current drought may be exacerbated by climate change and that climate change may be playing a role in future West Nile virus risk internationally.

There is little doubt that prolonged drought will impact Californian residents in many ways and an increased risk of mosquito-borne disease is just one of them. Fortunately, mosquito and vector control agencies in California work closely with local health authorities to monitoring mosquito and pathogen activity to provide warnings of increased risk. However, there is responsibility for everyone to ensure that the ways in which water is conserved around the home doesn’t increase the risks associated with mosquitoes.

potplantsaucer

If you’re worried about keeping your pot plants well watered but don’t want to provide a home for mosquitoes, fill the saucer with sand. It will keep the moisture in place but there is no “free water” for mozzies to use!

If you’re not able to “dump and drain” water holding containers, make sure that they’re covered to stop mosquitoes getting in or out. If you’ve got a swimming pool that’s neglected, start chlorinating it or release fish to eat through any mosquitoes. There are also a few mosquito control products that could be used, the most appropriate would probably be the insect growth regulator methoprene, it will stop mosquitoes emerging from the water holding container.

Why not share your tips on saving water around the home while not increasing opportunities for mosquitoes on Twitter?

The photo at the top of this post is taken by Dawn Ellner (see original photo here)

Does wetland rehabilitation need mosquito control?

Webb_estuarinewetlands_SydneyOlympicPark_2014Mosquitoes can be more than a nuisance. They pose health risks but could also erode the good will of the community for wetland rehabilitation projects. Wetland rehabilitation needs mosquito control.

It’s a warm February evening. A small and anxious group of residents have gathered in a local community hall to discuss the implications of a local wetland rehabilitation project. Some are angry. One of the first questions comes from an elderly gentleman. Close to tears, he explains how his grandchildren no longer visit due to the plagues of mosquitoes that engulf his property day and night. “What are you guys going to do about it?” he pleads.

I learnt a valuable lesson that night. Trying to explain the best mosquito repellent to use doesn’t go down too well when an audience is facing some significant nuisance-biting impacts around their homes. It doesn’t matter how much DEET is in the repellent, it may well work but is it something you need to wear all day just to get the day to day jobs done around the house? Something more substantial is required and, with hindsight, should have been in place before the first waves of mosquitoes left the local wetlands.

Coastal wetlands are under threat

Sea level rise and climate change  is putting pressure on saltmarshes and urbanisation is eating away land that would otherwise accommodate a landward shift in estuarine habitats. There is nowhere for saltmarshes to spread to so they’re destined to be swallowed up by mangroves. While the mangroves are valuable themselves, they don’t provide the same critical habitats required by many of the internationally protected migratory shorebirds that rely on saltmarshes. Saltmarsh habitats could well disappear from much of the east coast in coming decades if sea levels rise as expected and mangroves continue their march landward.

webb_landinglightswetlandsEstuarine wetlands and mosquitoes

Saltmarshes are home to one of our most important pest and vector mosquito species. While it is important to remember that Aedes vigilax is an Australian native animal and just as much a part of our wetland ecosystems as fish and birds, there is little doubt that it can have substantial impacts with regard to nuisance-biting and the transmission of Ross River virus.

Historically, many of the saltmarshes along the east coast were drained or filled to enable increased cattle grazing (although much of it was under the guise of protection from flooding). Tidal flows were cut off with the construction of levee banks and installation of flood gates. Notwithstanding the impacts of grazing, without tidal exchange, the habitats became brackish water to freshwater dominated systems with a dramatic change in vegetation. Saltmarsh and sedgeland vegetation was steadily replaced by reeds and rushes. Invasive plants such as Phragmites quickly took over many of these wetlands.

webb_floodgates_march2011Bringing back the tides

To combat the degradation of wetlands and impending loss due to climate change, there has been some ambitious wetland rehabilitation projects planned. One of the largest in the southern hemisphere is the Hexham Swamp Rehabilitation Project. Much can be learned from the experience in this wetland just west of Newcastle, NSW, and applied to rehabilitation projects, not only in Australia but overseas as well.

Rehabilitation of Hexham Swamp involved the staged opening of existing floodgates to reinstall tidal flows to an otherwise freshwater system. Many aspects of this project were considered and it is unsurprising that one major issue was the possible impact of mosquitoes. Mosquito populations were something of legend in this area, enough so that there is a “big mosquito” outside the local bowling club affectionately known as “Ossie the Mossie” (coincidently, “Ossie” celebrated her 20th birthday in March 2014).

One of the important considerations when assessing mosquito risk was that there had been a dramatic transformation of the areas surrounding the wetlands in the last 20 years. What was once agricultural land was now residential. This is the same situation right along the east coast of Australia, the rapid urbanisation and swelling residential populations along the coast have put people in the firing line of Aedes vigilax.

The prospect of mosquito control was raised in the early stages of the rehabilitation planning but there was great reluctance from the local authorities to head down that path. The problem is that broad scale mosquito control and ecological rehabilitation are often seen at opposite ends of the wetland management spectrum. I’ve experienced this many times first hand, from scepticism regarding the non-target impacts of biological larvicides to “Apocalypse Now” jokes as helicopters go about routine spraying of local wetlands.

Webb_MosquitoCollectionsIs there such a thing as “environmentally friendly” mosquito control?

The hangover from the actual and perceived impacts of pesticide use more than 50 years ago is still present in the minds of many responsible for managing local wetlands. I say perceived as the development of environmentally sustainable mosquito control programs over the past two decades may not be appreciated amongst those charged with managing wetlands and wildlife.

I feel we need to continue building the case for the range of mosquito control strategies available for our coastal wetlands. Not only do we need to convince local authorities that mosquito populations can be minimised without adversely impacting the local environment but that mosquito control should be a critical consideration in wetland rehabilitation projects. It also has the potential to reduce mosquito-borne disease.

We know that the direct non-target impacts of Bacillus thuringiensis israelensis and s-methoprene are minimal and there is growing evidence that the indirect impacts on local wildlife due to reduced mosquito populations isn’t a major concern. Well-designed projects can also minimise the frequency of treatments while reducing peaks in mosquito activity.

It seems our coastal bats populations are mostly eating moths, not mosquitoes so there is unlikely to be any significant impact on these bats resulting from reduced food. There is no reason why the judicious use of larvicides can’t knock the top off abundant mosquito populations, reduce the pest impacts on local community and not pose a risk to local wildlife. Perhaps it should be considered a critical component of wetland rehabilitation?

redkneeddoteral_kooragangisland_march2015Mosquito control and wetland rehabilitation

In speaking with wetland managers, I try to instil with them the importance of mosquito control. There is a risk that swarms of nuisance biting mosquitoes may erode the good will in the community for wetland rehabilitation. These systems, particularly in the early phases of rehabilitation don’t represent pristine environments and while there may not be a desire to establish ongoing mosquito control programs, some control may prove useful while the wetland comes back into balance with the changed environmental conditions.

Rehabilitation takes time and while there is substantial breakdown of freshwater vegetation it is not going to be ideal for fish and other mosquito predators. It is likely to provide ideal conditions for mosquitoes. Over time, however, fish are likely to increase in both their abundance and penetration into the wetlands and greater tidal flushing will make many of the wetland habitats generally unsuitable for mosquitoes.

Perhaps there is benefit in undertaking control as a show of good will to the local community? After all, engagement with the local community will be critical in the success of wetland rehabilitation projects.

The restoration of tidal flows to Hexham Swamp resulted in an initial increase in the abundance of Aedes vigilax. These increases resulted in substantial nuisance-biting impacts. However, in subsequent seasons, the populations of Aedes vigilax levelled out to comparable levels to those of the surrounding estuarine wetlands. The net result has generally been that the long-term moderate increases in Aedes vigilax populations have been balanced by reductions in Culex annulirostris and Coquilettidia linealis populations as the wetlands shifted from freshwater to saline. The health of the wetlands, as well as the local estuary, is improving.

Mosquito control is only a short-term fix and if the rehabilitation of estuarine wetlands is not carefully planned, there may well be ongoing mosquito impacts. However, reducing any initial impacts will go a long way to ensuring continued engagement of the community with the local wetlands. Cost and the operational considerations may be a barrier for organisations unfamiliar with broadscale mosquito control but these issues can be overcome with the expertise that exists in many parts of the country.

In summary, it is important that mosquito management be considered in the planning process of major wetland rehabilitation projects. There is little doubt that such projects will be required into the future as saltmarsh habitats and other estuarine wetlands are threatened but protection wetlands shouldn’t mean increasing mosquito populations. A balance is required between conservation of environmental health and protection of human health.

A longer version of this article originally appeared in “Mosquito Bites” (the Bulletin of the Mosquito Control Association of Australia).