Ross River virus in Melbourne, how did that happen?


Health authorities in Victoria have been warning of mosquito-borne Ross River virus for much of the summer. The state is experiencing one of its worst outbreaks of the disease but cases have mostly been across inland regions. Now it’s hit Melbourne. How has this happened?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. There are usually about 5,000 cases across Australia. However, in 2015 there was a major spike in activity with around 9,000 cases reported. It is a common misconception that the disease is only found in northern regions of Australia. I’m often told “I heard the disease is moving south from QLD?” That’s not the case.

The virus is just as much a natural part of the Australian environment as the mosquitoes and the wildlife that maintain transmission cycles.

While there are generally more cases in northern Australia, nowhere is safe. Some of the largest outbreaks have occurred in southern regions of Western Australia, South Australia, Victoria and even Tasmania.

The virus is widespread but is generally associated with rural regions. A driving factor in determining the activity of Ross River virus is that more than just mosquitoes are involved in outbreaks. The virus is maintained in the environment in native wildlife, especially kangaroos and wallabies. Even when and where there are high numbers of mosquitoes, without wildlife, outbreak risk is low. This is the reason why any clusters of locally infected cases in metropolitan regions are typical in areas where there are wetlands, wildlife and mosquitoes occurring together. We’ve seen this on the urban fringe of Sydney and Perth in recent years.

The announcement of locally acquired cases in the suburbs of Frankston and Casey, in Melbourne’s south-east, has taken many by surprise. Should it have?

Victoria is no stranger to mosquitoes and outbreaks of mosquito-borne disease. There are mosquito surveillance and mosquito control programs in place in many regions and historically there have been major outbreaks of mosquito-borne disease. From freshwater flood plains of the inland to the tidally flooded estuarine wetlands of the coast, Victoria has diverse and often abundant mosquitoes. But cases in the metropolitan region are rare.

Victorian mosquitoes are not all bad but over a dozen different mosquito species can spread Ross River virus.

The region where these cases have been identified are in proximity to bushland and wetland areas. There is no doubt plenty of mosquitoes and suitable wildlife too. While this is the first time local transmission has been documented, that doesn’t mean the virus hasn’t circulated in the past, or even that cases may have occurred.

For individuals infected but only suffering mild symptoms, the illness can be easily discounted as nothing more than a mild case of the flu. Without appropriate blood tests, these cases never appear in official statistics. For this reason, many mosquito researchers believe that the number of notified cases across the country is just the tip of the iceberg with many milder infections going diagnosed.

But why in Melbourne now?

It is difficult to know for sure. The two most likely explanations are that either environmental conditions were ideal for mosquitoes and suitable populations of wildlife were present so that the virus was much more active in the local environment than previously. The second explanation is that the virus may have been introduced to the region by a traveller or movement of wildlife. In much the same way Zika virus made its way from SE Asia to South America in the last few years, mosquito-borne viruses move about in people and animals, much less so than mosquitoes themselves (but that isn’t impossible either).

Victoria (as well as inland NSW) is experiencing one of its largest outbreaks of Ross River virus on record following significant flooding of inland regions. With so much activity of the virus in the region, perhaps an infected bird or person travelling to the metropolitan region brought the virus with them. When bitten by local mosquitoes, the virus started circulated among local mosquitoes and wildlife.

Most people infected by Ross River virus are bitten by a mosquito that has previously fed on a kangaroo or wallaby.

Once it’s made its way to metropolitan regions, the virus can be spread from person to person by mosquitoes. Common backyard mosquitoes, especially Aedes notoscriptus, can transmit the virus but as these mosquitoes are not particularly abundant, don’t fly vary far and will just as likely bite animals as humans, they’re unlikely to drive major urban outbreaks of the disease. This mosquito doesn’t pack the same virus-spreading-punch as mosquitoes such as Aedes aegypti that spreads dengue, chikungunya and Zika viruses. Aedes aegypti isn’t in Victoria.

We’re unlikely to see significant spread of Ross River virus across Melbourne but that doesn’t mean Victorians should be complacent. As there is no cure for Ross River virus disease, the best approach is to avoid being infected in the first place. Preventing mosquito bites is the best approach. For my tips and tricks on avoiding mosquito bites see this recent paper in Public Health Research and Practice as well as my article for The Conversation.

Keep an eye on the website of Victoria Health for more information.






Preserve and protect? Exploring mosquito communities in urban mangroves


This is a special guest post from Dr Suzi Claflin. Suzi found herself in Sydney, Australia, (via Cornell University, USA) in 2015 to undertake a research project investigating the role of urban landscapes in determining mosquito communities associated with urban mangroves. She was kind enough to put this post together to celebrate the publication of our research in Wetlands Ecology and Management!


Sometimes you’ve got to make hard choices for the greater good. These situations can arise anywhere, but here – as usual – we are concerned with mosquitoes. There’s a balancing act carried out by public health officials and wetland managers trying to both preserve endangered habitat and protect human health. In this guest post, I’ll explain the science behind research I recently published in collaboration with Dr Cameron Webb, and suggest one way forward for addressing human and environmental health concerns in urban wetlands.

During my PhD, I studied how the landscape surrounding small-scale farms affects the spread of a crop virus and the community of insect pests that carry it. When I came to Australia to work with Cameron, I was surprised to find myself applying the same type of landscape ecology to mosquitoes and mangroves in urban Sydney.

The misfortune of mangroves

Mangroves are real team players. They provide a range of services to the surrounding ecosystem and to the humans lucky enough to live near them. Mangroves are extremely effective at protecting the shoreline (but this can sometimes be a problem). They prevent erosion by gripping the soil in their complex root systems and buffer the beach by serving as a wave break. By filtering sediment out of the water that flows over them, mangroves also prevent their neighbouring ecosystems, such as coral reefs and seagrass forests, from being smothered.

Despite all their good work, mangroves have an almost fatal flaw; they prefer waterfront property. Unfortunately for them, so do humans. Urban and agricultural development has eaten away at mangroves, leaving them highly endangered.

The mosquito menace

Mozzies are a public health menace, because they spread human diseases like Ross River virus (RRV). Because of this, public health officials rightly spend time considering how to supress mosquito populations in order to reduce the risk of disease transmission.

Here’s where things get tricky: mangroves are great for mosquitoes.

That leaves public health officials and wetland managers in a difficult position. On the one hand, mangroves are delicate, at-risk ecosystems that need to be preserved. On the other, mangroves and surrounding habitats potentially harbor both the animal carriers of the RRV (e.g. wallabies) and a load of mosquitoes, which means that people nearby may need to be protected.

How can we do both?



Dr Suzi Claflin trapping mosquitoes in the mangroves along the Parramatta River, Sydney, Australia.


The potential power of prediction

This is a hard question to answer. One approach is prediction: using measurements of the environment, like rainfall and tide level, to estimate what the mosquito community will look like in a given region. The mosquito community determines what management actions, like spraying an insecticide, need to be taken, based on the threat it poses to public health.

We set out to explore how the way we use land (e.g. for residential areas or industrial areas) near urban mangroves affects the mosquito communities that live in those mangroves. The project involved dropping over retaining walls, slipping down banks, and tromping through muddy mangroves along the Parramatta River in Sydney. We set mosquito traps (billy cans of dry ice with a container on the bottom) and left them overnight to capture the mozzies when they are most active. We did this at two points in the summer, to see if there was any change over time.

We found that yes, the way we use land around a mangrove makes a difference. Mangroves with greater amounts of bushland and residential land in the surrounding area had fewer mosquitos, and fewer species of mosquitos. On the other hand, mangroves with greater amounts of industrial land surrounding them had a greater number of mosquito species, and those surrounded by greater amounts of mangrove had more mosquitos.

And, just to muddy the waters a bit more (pun intended), several of these relationships changed over time. These results show that although prediction based on the surrounding environment is a powerful technique for mangrove management, it is more complicated than we thought.

Another way forward: site-specific assessments

Our work suggests another way forward: site-specific assessments, measuring the mosquito community at a particular site in order to determine what management approaches need to be used. This is a daunting task; it requires a fair number of man-hours, and mangroves are not exactly an easy place to work. But it would be time well spent.

By assessing a site individually, managers can be confident that they are taking the best possible action for both the mangroves and the people nearby. It turns out that the best tool we have for striking a balance between environmental and public health concerns, the best tool we have for preserving and protecting, is information. In mangrove management—as in everything—knowledge is power.

Check out the abstract for our paper, Surrounding land use significantly influences adult mosquito abundance and species richness in urban mangroves, and follow the link to download from the journal, Wetlands Ecology and Management:

Mangroves harbor mosquitoes capable of transmitting human pathogens; consequently, urban mangrove management must strike a balance between conservation and minimizing public health risks. Land use may play a key role in shaping the mosquito community within urban mangroves through either species spillover or altering the abundance of mosquitoes associated with the mangrove. In this study, we explore the impact of land use within 500 m of urban mangroves on the abundance and diversity of adult mosquito populations. Carbon dioxide baited traps were used to sample host-seeking female mosquitoes around nine mangrove forest sites along the Parramatta River, Sydney, Australia. Specimens were identified to species and for each site, mosquito species abundance, species richness and diversity were calculated and were analyzed in linear mixed effects models. We found that the percentage of residential land and bushland in the surrounding area had a negative effect on mosquito abundance and species richness. Conversely, the amount of mangrove had a significant positive effect on mosquito abundance, and the amount of industrial land had a significant positive effect on species richness. These results demonstrate the need for site-specific investigations of mosquito communities associated with specific habitat types and the importance of considering surrounding land use in moderating local mosquito communities. A greater understanding of local land use and its influence on mosquito habitats could add substantially to the predictive power of disease risk models and assist local authorities develop policies for urban development and wetland rehabilitation.

Dr Suzi Claflin completed her PhD at Cornell University exploring environmental factors driving the spread of an aphid-borne potato virus on small-scale farms. She is now a postdoctoral research fellow at the Menzies Institute for Medical Research in Hobart, TAS. In her spare time she runs her own blog, Direct Transmission, focusing on disease and other public health issues (check it out here). To learn more about her doctoral research, follow this link!

Could a podcast stop mosquito bites?


This week I’m attending OzPod 2016: the Australian Podcast Conference, a workshop at the ABC, Ultimo. Celebrating International Podcast Day, the workshop brings together podcasters for “an event for the expanding podcast industry to escape the studio or office and meet with peers to share experiences, information, insights and ideas around audience acquisition and retention, new technologies, the rise of the podcast in traditional media, monetizing and of course the fine art of storytelling.”

 So, why am I going? I don’t even have a podcast!

I may not have a podcast now but I hope to start playing around with the platform soon as a complement to my other efforts to spread the word on science communication and public health awareness.

I’ve been thinking about kicking off a podcast for a while but have been a little reluctant due to time commitments. More importantly, I’ve also wanted to have a clear idea of what exactly I want to do.

In a previous life, I co-hosted a radio show on FBI Radio (during their test broadcast days) with my wife called “Good Morning Gidget”. It was a Saturday morning show of surf music and interviews with professionals involved in a wide range of coastal-based activities, from marine biologists to surf shop owners. Despite the early start on a Saturday morning, it was a load of fun. I’d also worked behind the scenes producing a couple of music shows. If I had more time, I really would have liked to pursue more work with community radio.

Perhaps podcasting will be the backup plan.


It’s great to listen back to packaged interviews with radio, like the Health Report (I’m talking zika virus) but I was also lucky enough to have a chance to contribute to a few podcasts this year. I spoke with Science On Top about the outbreak of Zika virus and the implications it has for Australia, Flash Forward on what will happen if we eradicate mosquitoes from the planet and ArthroPod on what its like to study mosquitoes for a living!

All these were a lot of fun and were really motivating for me to want to get started with podcasting myself.

I feel like my experience with sound recording and ongoing engagement with media provides a solid background in most of the technical skills I need to get started. I’m hoping I’ll leave the OzPod 2016 conference with a few more tips on story telling and structuring a podcast too.

What I’ve been struggling with is format. I like the conversational nature of most podcasts but as I’ll probably be doing everything myself, perhaps a more structured and edited podcast is the go?

There are very few podcasts I listen to that are built around a one-person show. I’m not sure I could pull it off. Does anyone really want to listen to me ramble on for 20 mins about mosquitoes? 40minutes?

Sometime over the coming summer I hope to launch a short series of podcasts covering some of the basics of mosquito biology and how that relates to the ways we protect ourselves and our families from mosquito bites and mosquito-borne disease. I want to share my fascination with mosquitoes and explore some of the gaps in our understanding of mosquitoes, particularly their role in our local environment. 

Hopefully I can recruit some of my colleagues from around Australia for a chat too so we can share a little about the science behind our public health messages and what life is like to be chasing mosquitoes around swamps all summer

Sound like a good idea? Join the conversation on Twitter and let me know what you think, would you listen to a podcast about Australian mosquitoes?







Asian tigers and shifting mosquito control from the swamps to the suburbs

aedes_albopictus_SteveDoggettOne of the world’s most troublesome nuisance-biting mosquitoes is perfectly adapted to summer life in southern cities in Australia. This is bad news for communities in temperate climate regions in Australia that would otherwise be immune from the threats of exotic mosquito vectors of dengue and chikungunya virus otherwise limited to tropical regions of the world.

I’ve been invited to speak in the “Managing Current & Future Exotic Mosquito Threats” symposium at the Australian Entomological Society conference to share some of the experiences in temperate Australia regarding exotic and endemic mosquito threats and how the threat of the Asian Tiger Mosquito is being addressed.

Australia has annual activity of mosquito-borne disease. Around 5,000 people a year fall ill following a mosquito bite each year in Australia, most commonly due to Ross River virus. These pathogens are generally spread by native “wetland” mosquitoes such as Aedes vigilax or Culex annulirositrs). Australia has also had major outbreaks of dengue in the past but the only mosquito in Australia able to spread the viruses, Aedes aegypti, is restricted to far north QLD. It is unlikely to spread to southern cities beyond Brisbane based on temperature change alone but there is another mosquito that may pose a threat of dengue or chikungunya virus transmission in southern regions.

The Asian Tiger Mosquito (Aedes albopictus), poses a significant threat to Australia. It was discovered in the Torres Strait in 2005, having thought to have hitchhiked on fishing boats from Indonesia. Although the mosquito hasn’t yet managed to set up home on mainland Australia, its a more likely a question of when, not if, this mosquito will make its way here.

The container-inhabiting (not wetland living) mosquito has already hitchhiked to Europe and North America with eggs carried with people and their belongings. Movement of people, not shifts in climate is the biggest risk. Should it reach one of our major southern cities, there is little doubt that mosquito could become a persistent summer pest and possible public health threat. The way we respond to water shortages in our cities, by increasing water storage around our homes, may set the scene for this mozzie to move in.

Once the mosquito is established in our cities, all we need are travellers to bring in the viruses. Travellers introduce dengue virus into Far North QLD every year. Last year Japan experienced its biggest outbreak of dengue in over 70 years thanks to a traveller introducing the virus to local mosquitoes in downtown Tokyo. This Tokyo outbreak of dengue has implications for local authorities in Australia.

In my presentation at the Australian Entomological Society conference, I’ll highlight some of the issues to consider when assessing the risks posed by exotic mosquitoes in New South Wales as well as outline some of the problems local authorities may have to face when dealing with these mosquitoes that differ from the current focus of mosquito and mosquito-borne disease surveillance and control strategies.

You can view my presentation slides and abstract below:

Developing a strategic response to exotic mosquito threats in NSW

Cameron E Webb (1,2), Jay Nicolson (3), Andrew van den Hurk (4) & Stephen L Doggett (1)

(1)Department of Medical Entomology, Pathology West – ICPMR Westmead, Level 3, ICPMR, Westmead Hospital, Westmead NSW 2145 Australia; (2) Marie Bashir Institute of Infectious Disease and Biosecurity, University of Sydney, NSW 2006, Australia; (3) School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA 6009, Australia; (4) Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, QLD 4108, Australia.

Mosquito-borne disease management in Australia faces challenges on many fronts. Home growth threats posed by endemic mosquito-borne pathogens (e.g. Ross River virus (RRV)) may increase with a changing climate but exotic mosquitoes and pathogens are an emerging threat. In the absence of a national strategy to address these exotic threats, local authorities must develop regionally specific surveillance and response programs to identify and respond to exotic mosquito incursion. The Asian tiger mosquito, Aedes albopictus, poses the greatest risk to temperate regions of Australia due to their close ecological associations with urban habitats and ability to transmit exotic pathogens (e.g. dengue viruses (DENV) and chikungunya virus (CHIKV)). The mosquito is widespread in local regions, has been detected at international ports and, given the increasing frequency of local travellers to regions where this mosquito is abundant, it raises the potential that an incursion into metropolitan Sydney in the coming years is probable. When this happens, what is the likelihood that this mosquito becomes established? Laboratory studies have confirmed Ae. albopictus could survive in the egg stage under climatic conditions typical of a Sydney winter. Despite the endemic mosquito, Aedes notoscriptus, sharing the same ecological niche to Ae. albopictus, cohabitation studies demonstrated that no interspecies competition would act to limit the local spread of Ae. albopictus and the mosquito could proliferating in the summer. Critically, vector competence experiments have demonstrated the ability of Ae. albopictus to transmit endemic pathogens and, given their propensity to bite humans, could contribute to human-mosquito-human outbreaks of RRV in urban areas of NSW, complementing the enzootic vectors that currently limit transmission to the metropolitan fringe. Local authorities need to develop a multiagency strategic approach to surveillance concomitant with strategic response to reduce the pest and public health threats associated with exotic mosquitoes.

Make sure you check out the tweets from the Australian Entomological Society Annual Conference in Cairns, QLD, 27 September through 1 October 2015, by clicking on #AusEntoSoc15