Are mosquitoes disappearing?

IMG_8634

There’s been a swarm of headlines recently about the global decline of insects. Could mosquitoes be disappearing too? Probably not but how would we know?

Recent research suggests that over 40% of insects worldwide are in decline. Some of the most vulnerable insects are those that occupy specific ecological niches. When scientists reviewed over 70 historical reports of insect declines, environmental degradation, the spread of agriculture, and widespread insecticide use were suspected for causing the decline.

What about mosquitoes? Sadly, they’re not a group of insects many people would care too much about if they were threatened with extinction.

Some of the most important mosquitoes, those that transmit dengue viruses or malaria parasites, are evading our efforts to eradicate them. For these insects, the insects authorities the world over actively are trying to kill, they’re surviving quite well. They’re becoming resistant to commonly used insecticides and they’re thriving living in habitats in and around our cities.

The reality is that some mosquitoes are probably doing very well , while those potentially under threat are probably those we know least about.

Tracking change in mosquito populations

There are over 300 mosquitoes in Australia. The mosquitoes that bring with them the greatest pest and public health risks are well studied. Mosquitoes such as Aedes camptorhynchus, Aedes vigilax, and Culex annulirostris are nuisance-biting pests and have been associated with outbreaks of Ross River virus disease. Their populations are monitored as part of mosquito control and surveillance programs around the country. But these programs probably won’t reliably pick up declines in lesser known mosquitoes.

There are mosquito surveillance programs around the country that provide information on local mosquito populations to health authorities. That’s how scientists know if this really is the “worst year for mosquitoes ever”! There is little evidence that the major pest mosquitoes are in decline. But these programs probably won’t reliably pick up declines in lesser known mosquitoes.

Mosquitoes under threat?

It is entirely possible that there are mosquitoes under threat.

What about the mosquitoes that specifically feed on frogs, how will they be impacted by declining frog populations?

Mosquitoes that are highly specialised to certain environments or ecological niches or close interactions with wildlife may struggle if their ecosystems are disrupted. Habitat degradation may hit some mosquitoes in much the same way it’ll hit other insects. It won’t end well.

What about mosquitoes associated with snow-melt pools in the Australian alps? Could climate change see their habitats destroyed?

Mosquitoes can adapt

Mosquitoes can be some of the most adaptable animals on the plant. That’s probably why they’ve been such persistent pests.

We’ve found that mosquitoes are more abundant in mangrove forests that are degraded or surrounded by industry. Some mosquitoes are even becoming resistant to commonly used insecticides. Those same issues threatening many thousands of insects are no problem for some mosquitoes.

The reality is, mosquitoes have already been around for millions of years, they’ll probably be around long after. Its just that we could take a few species with us…

++

The image at the top of this article is of a carbon-dioxide baited mosquito trap, there were thousands of mosquitoes inside; collected late in 2018 along the Georges River in southern Sydney.

Join the conversation on Twitter, are there any mosquitoes you think are under threat?

 

Wetlands, climate change, and managing mosquitoes

img_9966

I’ve spent over twenty years sloshing about in wetlands around Sydney and surrounds. They’re changing. They’re changing due to shifts in climate, sea level rise, and urbanisation. The 2019 World Wetlands Day is a time to stop and reflect on the state of wetlands around the world and how we can keep them health under the threat of climate change.

World Wetlands Day is held every year on 2 February,  this day marking the adoption of the Convention on Wetlands on 2 February 1971 in Ramsar, Iran. The theme of the 2019 World Wetlands Day is “Wetlands and Climate Change” and we shouldn’t just think about the impact of climate change on wetlands but also how wetlands can help us as we face the challenges of a changing climate.

Coastal wetlands around Sydney are impacted in many ways. Mangrove forests and saltmarshes are degraded through direct and indirect human activity. There is recent research indicating that sea level rise is impacting mangroves along the Parramatta River in Sydney. This requires active management to ensure substantial degradation and die back occurs, as has been seen elsewhere in Australia.

Some of our research even suggests that degraded mangroves are more productive when it comes to mosquitoes. Effective rehabilitation of these habitats may actually reduce the mosquitoes flying out of these environments and impacting the community nearby. Similarly, urban planning should consider the risk posed by mosquitoes in wetlands adjacent to new and expanding residential developments. This includes major wetland rehabilitation projects.

img_9222

The challenges facing wetlands isn’t unique to Australia. Released in conjunction with World Wetlands Day preparations was The Global Wetland Outlook. A document that provides “a current overview of global wetlands: their extent, trends, drivers of change and the responses needed to reverse the historical decline in wetland area and quality”.

While we think of rainforests and coral reefs under greatest threat, it is a sobering thought to think that up to 87% of the global wetland resource has been lost since 1700. These are environments that were, until relatively recently, considered wastelands. With this lack of perceived value came greater susceptibility to abuse and degradation.

Along with the unsurprising loss of wetland area and decline in biodiversity associated with these environments come some interesting findings. The most interesting from a mosquito management point of view is that artificial wetlands are actually increasing in some areas. Notwithstanding an assessment of the ecosystem services they provide, they’re more likely to be closer to human habitation, so any mosquitoes associated with them may have relatively greater impact.

In recent years, the value of wetlands has increased. There is an understanding now that these environments provide critical ecosystem services. There is also a growing understanding of the wetland’s roles in mitigating the impacts of climate change. Coastal wetlands in particularly provide protection from increasingly severe storm events and trap valuable carbon stores that assist in mitigating the impacts of climate change.

img_9422

This then raises the issues of mosquitoes. Mosquitoes are a natural part of wetland ecosystems. While often their pest impacts may indicate the poor health of the wetlands, at other time, abundant mosquito populations are a natural occurrence that fluctuate in their intensity from year to year. How do best manage mosquitoes associated with these wetlands?

I’ve written about how I think mosquito control should actually be considered an important component of coastal wetland rehabilitation. How climate change may be impacting mosquito threats and that even hot and dry summers under the influence of El Nino may not necessarily mean that mosquitoes are less problematic.

Based on the experience during the 2018-2019 summer, mosquitoes seem to persist in plague proportions despite the extreme temperatures being experienced in NSW.

It is important to remember that there are many mosquito species associated with wetlands, especially freshwater habitats, that pose no substantial threat to humans. There are hundreds of mosquitoes in Australia, less than a dozen really pose a substantial pest or public health threat. Many mosquitoes may play an important ecological role in wetland ecosystems. This may include representing a locally important food source for insectivorous wildlife or possibly pollinating plants.

IMG_9794

A balance is required. If we’re going to continue squeezing an increasing human population into a narrow stretch of land up against the coast, there are many issues to consider here and they’re not just about how human activity is impacting those coastal wetlands. Pollution is a problem, our physical damage is another. Worst still, we’re taking away the opportunity of these normally resilient habitats to adapt to a rising sea levels and increasingly frequent storm events. Our cities and their infrastructure provide a hard and unforgiving edge against the wetlands.

Our wetlands even battle against themselves sometime. The threat of mangrove incursion into saltmarsh habitats is of increasing concern. Its counter-intuitive but perhaps we need to be pulling out mangroves to save some coastal wetlands.

Expanding, modifying, and creating new coastal wetlands will require local authorities to turn their mind to the issue of mosquitoes. Firstly, consideration needs to be given to what may constitute a tolerable level of mosquito exposure. How many mosquito bites are too many? How many cases of mosquito-borne disease are considered “normal” each year. Once these thresholds are drawn and exceeded, who is responsible for the decisions on active mosquito control? Who pays?

Another ecosystem disservice to consider is how the nuisance-biting of mosquitoes may discourage engagement with local wetlands. less engagement may mean less support for conservation and rehabilitation efforts. Less community interest, support, and activism may then result is less political drive to protect local wetlands by local authorities.

Importantly, decisions regarding the management of coastal wetlands, as well as those peppered throughout the city, need to be made with some consideration of mosquitoes and their potential impact. How do you convince the local community about the overall benefits of carbon sequestration, wildlife conservation, and protection of infrastructure is worthwhile if their quality of life is degraded through summer swarms and nuisance-biting mosquitoes?

More details on managing the risks associated with estuarine mosquitoes is provided in this book chapter included in the free Sydney Olympic Park Authority’s guide to managing urban wetlands.

For more about World Wetlands Day activities in Australia see here.

To stay up to date with my adventures in local wetlands, you can follow me on Instagram here.

 

 

 

Can citizen science help stop mosquito-borne disease outbreaks?

Aedesaegypti_Westmead_Webb

Mosquito surveillance has been a critical component of how health authorities manage the risk of mosquito-borne disease. Data on the abundance and diversity of mosquitoes, together with activity of mosquito-borne pathogens, can guide decisions on when and how to apply mosquito control agents or issue public health warnings.

Almost every state and territory in Australia conducts seasonal mosquito surveillance. The exceptions are Tasmania and ACT, although both have had some limited investigations over the years. Even among those doing routine surveillance, the program structure varies but most include the collection of mosquitoes. This is how we can determine if it really is “the worst mosquito season ever”!

The programs are currently are working well in providing early warnings of outbreaks of mosquito-borne disease. These programs often include mosquito trapping undertaken by local governments and, occasionally, members of the public. For may years there has been a strong interest in citizen scientists undertaking mosquito sampling, particularly by some schools. The projects that I’ve been involved with have rarely got off the ground for various reasons. School holidays at the peak of mosquito season doesn’t help. Beyond that, the consumable costs of the traps we use, especially the dry-ice (carbon dioxide) used to bait the traps, can be a barrier to involvement. Dry-ice use in schools, and the associated health and safety issues, has been a cause for concern too. Finally, the fact that mosquitoes may be attracted to traps operated in school or community grounds and that these mosquitoes may be carrying disease-causing pathogens can often raise concerns.

As a result, there really haven’t been any major citizen science based mosquito surveillance programs until recently. Things are changing.

One reason local authorities are starting to turn their minds to a citizen science based approach is that the threat of exotic mosquitoes will require a shift in focus from the swamps to the suburbs. The mosquitoes that drive outbreaks of dengue, particularly Aedes aegypti and Aedes albopictus live in water-holding containers in backyards and populations are not as easily measured by traditional surveillance approaches. This is why there has been a much stronger engagement with the public in Far North QLD (a region where Aedes aegypti is present and causes occasional outbreaks of dengue) where health authorities are regularly visiting backyards looking for and controlling backyard mosquitoes

There are many reasons why citizen science is starting to come into play when it comes to mosquito surveillance more broadly. Technology is getting better (as highlighted by many smartphone apps) but also, some of the laboratory techniques are getting cheaper. This is a really critical issue.

A breakthrough in rapid testing of mosquitoes led to the development of an award winning initiative in Brisbane by Metro South Health and Queensland Health Forensic & Scientific Services. The Zika Mozzie Seeker project combines this new laboratory technique with DIY mosquito traps by the general public to help track exotic mosquitoes. In short, residents create their own mosquito trap out of a bucket or recycled plastic container, it is filled with water and placed in a yard with a small piece of paper hung inside. Mosquitoes then drop by to lay eggs on the paper. After a couple of weeks, the traps are collected and egg filled paper strips sent to the lab and tested to track the DNA of local and exotic mosquitoes. The project has been an amazing success with around 2,000 participants being involved in recent years (that adds up to about 150,000 mosquito eggs collected and tested). Luckily, no exotic mosquitoes have been detected.

But when it comes to citizen science based projects, perhaps it isn’t the mosquitoes collected (the backyard mosquito battles are fun to track though) but the awareness raised that is important. Awareness not only of the risks posed by mosquitoes, but what you can do about them through the safe and effective use of mosquito repellents and other personal protection measures. Engaging the public through citizen science may be the way to go. It doesn’t always work in reaching new audiences, as was discovered in a mosquito surveillance project in South Australia, but that doesn’t mean it won’t!

Perhaps the rise in new smartphone apps will help. There are a few out there, like the Globe Observer and Mosquito Alert. These, and other smartphone apps, deserve their own post (stay tuned). However, the significant initiative of recent years has been the Global Mosquito Alert project. Launched in May 2017, here is an extract from their media release:

The new initiative, launched under the name ‘Global Mosquito Alert’, brings together thousands of scientists and volunteers from around the world to track and control mosquito borne viruses, including Zika, yellow fever, chikungunya, dengue, malaria and the West Nile virus. It is the first global platform dedicated to citizen science techniques to tackle the monitoring of mosquito populations. The programme is expected to move forward as a collaboration involving the European, Australian and American Citizen Science Associations as well as the developing citizen science community in Southeast Asia.

With such momentum, it is an exciting time to consider the potential of citizen science in Australian mosquito surveillance programs. This is what i will be exploring in my presentation at the Australian Citizen Science Conference in Adelaide this week.

I’ll be presenting the paper on Wednesday 7 February 2018 in the “Empower with Data” session. The full abstract of our presentation is below:

The public as a partner in enhancing mosquito surveillance networks to protect public health

Craig Williams (1), Brian L. Montgomery (2), Phil Rocha (2), and Cameron Webb (3)

(1) University of South Australia, School of Pharmacy and Medical Sciences; (2) Metro South Public Health Unit, Queensland Health; (3) Medical Entomology, Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney

Mosquito-borne diseases are pervasive public health concerns on a global scale. Strategic management of risk requires well-designed surveillance programs, typically coordinated by local health authorities, for both endemic and exotic mosquitoes as well as the pathogens that they may transmit. There is great potential to utilise citizen science to expand the reach of current surveillance programs, particularly those centred on urban areas. There is increasing focus internationally on the role of citizen science in mosquito surveillance as evidenced by the establishment of the ‘Global Mosquito Alert’ project driven by multiple international stakeholders and citizen science associations. In Australia, new initiatives to engage the public in mosquito surveillance are emerging in multiple centres; utilizing a range of emerging field and laboratory technologies that remove previously existing barriers to community involvement. In South Australia, citizen science entomology programs have been trialed, and mosquito trapping and identification technology to expand existing trapping networks has been assessed. In suburban South-East Queensland, Zika Mozzie Seeker is linking citizen scientists into a network by using new laboratory techniques to rapidly screen for Ae. aegypti DNA in large numbers of eggs collected from DIY ovitraps,. In NSW, citizen science is being used to promote biodiversity and delineate pest and non-pest activity of mosquitoes associated with urban wetlands and surrounding suburbs. Citizen science holds great potential for public engagement activities as well as serving to enhance existing surveillance operations.

 

Join the conversation on Twitter by following Dr Cameron Webb, A/Prof Craig Williams and keep an eye on the meeting via the hashtag

A Guam visit to battle Zika virus and discover new mosquitoes

Guam2017_Beach

There are few places on earth where you can search in water-filled canoes for one of the most dangerous mosquitoes on the planet less than a stone’s throw from tourists posing for selfies alongside their inflatable novelty swans in the nearby lagoon.

Guam is the place to go if you need to tick that off your “to do” list!

I was fortunate to be invited to speak at the Pacific Island Health Officers Association (PIHOA) Regional Zika Summit and Vector Control Workshop in Guam 25-29 June 2017. The theme of the summit was “Break Down the Silos for Preparedness and Management of Emergencies and Disasters in United States Affiliated Islands” and had objectives to critical analyze the regional responses to recent mosquito-borne disease outbreaks while developing policies to strengthening public health emergency response and preparedness systems and capabilities within the region.

The tranquil lagoons of the Pacific Islands may seem a very long way from the hustle and bustle of the busy South American cities that held the 2016 Olympics but just as Zika virus was grabbing the attention of sports reporters everywhere, health authorities active in the Pacific were growing concerned too.

Guam2017_StormClouds

The Pacific has been far from free of mosquito-borne disease outbreaks. Previous outbreaks of dengue, chikungunya and even Ross River virus had struck numerous times. While sometimes widespread, at other times outbreaks were more sporadic or isolated. As is the case for many non-endemic countries, outbreaks are prompted by movement of infected travelers and the prevalence of local mosquitoes.

Across the region there are four mosquitoes of primary concern, Aedes aegypti, Aedes albopictus, Aedes polynesiensis and Aedes hensilli. The greatest concerns are associated with Aedes aegypti and in those countries where the mosquito is present, the risks of mosquito-borne disease outbreak are greatest. For this reason alone, it is imperative that good entomological surveillance data is collected to confirm the distribution of these mosquitoes but also to develop strategies to eradicate, where possible, Aedes aegypti should it be introduced to new jurisdictions.

With a growing interest in developing mosquito surveillance and control programs for exotic mosquitoes here in Australia, it was a perfect opportunity for me to get a closer look at how the threats of these mosquitoes and associated outbreaks of disease are managed.

On the third day of the meeting, vector control took centre stage. A brilliant day of talks from each of the jurisdictions on the disease outbreaks they’ve faced and how they’re preparing for future threats. There were presentations from the United States Affiliated Pacific Islands (USAPI) including Guam, the Federated States of Micronesia (Yap, Kosrea, Chuuk, Pohnpei), the Commonwealth of the Northern Marianas (CNMI), the Republic of Palau, the Republic of Marshall Islands (RMI), and American Samoa.

Hearing from these teams doing their best to protect their local communities from the threat of mosquito-borne disease, with only limited resources, was quite eye opening. There was passion and dedication but each territory faced unique challenges to ensure the burden of disease is minimised.

Guam2017_Canoe

Just outside the workshop venue were a series of water-filled canoes. Most contained larvae!

There is little doubt that climate variability will have a strong role to play in the impacts of mosquito-borne disease across the region in the future but there are so many other issues that could be contributing to increased risk too. One of the biggest problems is rubbish.

Time and time again, the issue of accumulated waste, especially car bodies and discarded tyres, was raised as a major problem. As many of the key pest mosquitoes love these objects that trap water, treatment of these increasing stockpiles becomes more of a concern. Community wide cleanups can help reduce the sources of many mosquitoes but the rubbish more often than not remains on the island and requires continued management to ensure is not becoming a home to millions of mosquitoes.

It is a reminder that successful mosquito control relies on much more than just insecticides. An integrated approach is critical.

There was a “hands on” session of surveillance and control. Coordinated by PIHOA’s Eileen Jefferies and Elodie Vajda, the workshop was a great success. It provided an opportunity for many to see how to prepare ovitraps and BGS traps (one of the most widely used mosquito traps) and discuss the various considerations for choosing and using the right insecticides to reduce mosquito-borne disease risk. Workshop attendees were also the luck recipients of a selection of cleaver public awareness material produced in Guam, from personal fans and anatomically incorrect plush mosquitoes to Frisbees and mosquito-themes Pokemon cards!

Guam2017_EntomologyandEnvironmentalHealth

Guam “mozzie” team: Elodie Vajda, Claire Baradi, Michelle Lastimoza, Eileen Jefferies and me

Following the summit, there was a chance to visit the new Guam “Mosquito Laboratory”, newly established as part of the Guam Environmental Public Health Laboratory (GEPHL). I’ll go out of my way to visit any mosquito laboratory but I was particularly keen to see this one as one of my previous students was playing a key role in establishing the mosquito rearing and identification laboratories. Elodie has been doing an amazing job and it was brilliant to geek out with her over some hard core mosquito taxomony as we tried to ID a couple of tricky specimens. [Make sure you check out our recent paper on the potential impact of climate change on malaria outbreaks in Ethiopia]

It actually turned out that one of their “tricky specimens” was a new species record for Guam – an exotic mosquito Wyeomyia mitchellii! The paper reporting this finding has just been published “New Record of Wyeomyia mitchellii (Diptera: Culicidae) on Guam, United States“.

Guam2017_SpeciesList

Mosquito-borne disease in the Pacific isn’t going anywhere and it’s important that once the focus fades from Zika virus, dengue and chikungunya viruses will again take centre stage and their potential impacts are significant. With the added risks that come with gaps in the understanding of local pest and vector species, the prevalence of insecticide resistance among local mosquitoes, climate variability and a struggle to secure adequate funding, challenges lay ahead in ensuring the burden of mosquito-borne disease doesn’t increase.

A modified version of this article appears in the latest issue (Winter 2017; 12(1)) of Mosquito Bites Magazine, (a publication of the Mosquito Control Association of Australia)

 

Why do mosquitoes seem to bite some people more?

Back in 2015, I had an article published at The Conversation on why some people are more likely to be bitten by mosquitoes than others. It is one of the most commonly asked questions I get whenever I give public talks (or friends and family are quizzing me at summer BBQs).

This article was incredibly successful and has currently been read by approximately 1.4 million people. That is a lot of people. Hopefully the science of mosquito bites has got out there and actually helped a few people stop themselves or their family being bitten by mosquitoes!

The warm weather is starting to arrive here in Australia so I am sharing this once more for those wondering why they’re always the “mosquito magnet” among their friends…

Health Check: why mosquitoes seem to bite some people more

Image 20150123 2159 14n8u7p
There are up to 400 chemical compounds on human skin that could play a role in attracting mosquitoes.  sookie/Flickr, CC BY-SA

There’s always one in a crowd, a sort of harbinger of the oncoming mosquito onslaught: a person mosquitoes seem to target more than others. What is it about these unlucky chosen few that makes them mosquito magnets?

There are hundreds of mosquito species and they all have slightly different preferences when it comes to what or who they bite. But only females bite; they need a nutritional hit to develop eggs.

Finding someone to bite

Mosquitoes are stimulated by a number of factors when seeking out a blood meal. Initially, they’re attracted by the carbon dioxide we exhale. Body heat is probably important too, but once the mosquito gets closer, she will respond to the smell of a potential blood source’s skin.

Studies have suggested blood type (particularly type O), pregnancy and beer drinking all make you marginally more attractive to mosquitoes. But most of this research uses only one mosquito species. Switch to another species and the results are likely to be different.

There are up to 400 chemical compounds on human skin that could play a role in attracting (and perhaps repulsing) mosquitoes. This smelly mix, produced by bacteria living on our skin and exuded in sweat, varies from person to person and is likely to explain why there is substantial variation in how many mozzies we attract. Genetics probably plays the biggest role in this, but a little of it may be down to diet or physiology.

One of the best studied substances contained in sweat is lactic acid. Research shows it’s a key mosquito attractant, particularly for human-biting species such as Aedes aegypti. This should act as fair warning against exercising close to wetlands; a hot and sweaty body is probably the “pick of the bunch” for a hungry mosquito!

Probably the most famous study about their biting habits demonstrated that the mosquitoes that spread malaria (Anopheles gambiae) are attracted to Limburger cheese. The bacteria that gives this cheese its distinctive aroma is closely related to germs living between our toes. That explains why these mosquitoes are attracted to smelly feet.

But when another mosquito (such as Aedes aegypti) is exposed to the same cheese, the phenomenon is not repeated. This difference between mosquitoes highlights the difficulty of studying their biting behaviours. Even pathogens such as malaria may make us more attractive to mosquitoes once we’re infected.

Only females bite because they need a nutritional hit to develop eggs.
Sean McCann/Flickr, CC BY-NC-SA

Researchers are trying to unscramble the irresistible smelly cocktails on the skins of “mosquito magnets”. But the bad news is that if you’re one of these people, there isn’t much you can do about it other than wearing insect repellents.

The good news is that you may one day help isolate a substance, or mixes of substances, that will help them find the perfect lure to use in mosquito traps. We could all then possibly say goodbye to topical insect repellents altogether.

Attraction or reaction?

Sometimes, it’s not the bite as much as the reaction that raises concerns. Think of the last time the mosquito magnets in your circle of friends started complaining about being bitten after the event where the purported mosquito feast took place. At least, they appear to have attracted more than the “bite free” people who were also at the picnic, or concert or whatever.

But just because some people didn’t react to mosquito bites, doesn’t mean they weren’t bitten. Just as we do with a range of environmental, chemical or food allergens, we all differ in our reaction to the saliva mosquitoes spit while feeding.

People who don’t react badly to mosquito bites may think they haven’t been bitten when they’ve actually been bitten as much as their itchy friends. In fact, while some people attract more mosquito bites than others, there’s unlikely to be anyone who never, ever, gets bitten.

The problem is that people who don’t react to mosquito bites may all too easily become complacent. If you’re one of them, remember that it only takes one bite to contract a mosquito-borne disease.

Finally, there is no evidence from anywhere in the world that there is something you can eat or drink that will stop you being bitten by mosquitoes. No, not even eating garlic, or swallowing vitamin B supplements.

The ConversationPerhaps if we spent as much time thinking about how to choose and use mosquito repellents as we do about why mosquitoes bite our friends and family less than us, there’d be fewer bites all around.

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article was originally published on The Conversation. Read the original article.

 

Talking wetlands, wildlife and mosquitoes at the 2017 Australian Entomological Society Meeting

homebushbay_mangroves_jan2016

I’ll be in Terrigal, on the NSW Central Coast, for the 2017 Australian Entomological Society conference and taking the opportunity to present a summary of a number of collaborative projects undertaken in recent years, from working out how surrounding landuse influences the mosquito populations in urban mangroves to how important mosquitoes are to the diet of local bats.

Together with a range of colleagues, I’ve been undertaking research into the factors driving mosquito and mosquito-borne disease risk in urban wetlands. It is a complex puzzle to solve with more than just mosquitoes determining local pest and public health risks. However, with outbreaks of mosquito-borne Ross River virus on the rise in recent years, including urban areas of Australia, there is a need to better understand the factors at play.

There is a range of factors that may increase the risk of Ross River virus, they include suitable wetlands, wildlife reservoirs of the pathogen and mosquitoes. Understanding the mosquitoes associated with urban estuarine and freshwater wetlands is critical.

Investigating the role of surrounding landuse in determining the mosquito communities of urban mangroves, we found that industrial and residential areas tended to increase abundance of mosquitoes, perhaps due to direct or indirect impacts on the health of those mangroves. We’ve found previously that mosquitoes problems are often associated with estuarine wetlands suffering poor health, perhaps this is determining the increased mosquito risk we identified? You can read more in our publication here.

Expanding the investigation to look at urban freshwater wetlands, it was found that there was a high degree of variability in local mosquito populations and that each wetland needed to be assessed with consideration to be given to site-specific characteristics. You can read more about our work investigating mosquito assemblages associated with urban water bodies in our publication here.

More research is underway in this field and my PhD student, Jayne Hanford, has already started collecting some fascinating data on wetland biodiversity and local mosquito populations.

While the focus of our studies is often prompted by concern about Ross River virus, interestingly, in recent years we’ve found considerable activity of Stratford virus. This is not currently considered a major human health concern but given how widespread it is, it raises concerns about the suitability of local wildlife, even in Western Sydney, to represent important reservoirs of mosquito-borne pathogens. You can read more about Stratford virus in our publication here.

The final piece of the puzzle is to understand the ecological role of mosquitoes. Where their potential health threats are deemed significant, how could management of mosquito populations have unintended consequences for other wildlife. What about the animals that eat mosquitoes? A number of years ago we did some research to determine the importance of mosquitoes in the diet of coastal bats. While there was no indication that mosquitoes are a critical component of their diet, they are still being snacked on and mosquito control programs need to consider any local ecological impacts.

Now, how am I going to squeeze all this into 15 minutes….

The presentation abstract is below:

What drives mosquito-borne disease risk in urban wetlands?

Webb, C. (1, 2), J. Hanford (3), S. Claflin (4), W. Crocker (5), K. Maute (5), K. French (5), L. Gonsalves (6) & D. Hochuli (3)

(1) Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, NSW 2145; (2) Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, NSW 2006; (3) School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006; (4) Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000; (5) Centre for Sustainable Ecosystem Solutions, Biological Sciences, Faculty of Science, Medicine & Health, University of Wollongong NSW, 2522; (6) School of Arts and Sciences, Australian Catholic University, North Sydney, NSW, 2060.

Managing pest and public health risks associated with constructed and rehabilitated urban wetlands is of increasing concern for local authorities. While strategic conservation of wetlands and wildlife is required to mitigate the impacts of urbanisation and climate change, concomitant increases in mosquitoes and mosquito-borne disease outbreak risk must be addressed. However, with gaps in our understanding of the ecological role of mosquitoes, could control strategies have unintended adverse impacts on vertebrate and invertebrate communities? A series of studies were undertaken in urban wetlands of greater Sydney to investigate the role of land use, wetland type and wetland aquatic biodiversity in driving the abundance and diversity of mosquito populations. A diverse range of mosquitoes, including key pest an vector species, were found in urban environments and mosquito-borne pathogens were detected in local populations, implicating local wildlife (e.g. water birds and macropods) as potential public health risk factors. Estuarine wetlands are locally important with the percentage of residential land and bushland surrounding wetlands having a negative effect on mosquito abundance and species richness while the amount of industrial land had a significant positive effect on species richness. Mosquito control in these habitats is required but insectivorous bats were identified as mosquito predators and the indirect implications of mosquito control should be considered. The aquatic biodiversity of urban freshwater wetlands influenced the species richness of local mosquito populations indicating vegetation plays an important role in determining local pest species. However, the matrix of wetland types also influences the abundance of mosquitoes in the local area. These results demonstrate the need for site-specific investigations of mosquito communities to assist local authorities develop policies for urban development and wetland rehabilitation that balance the need for conservation with reduced public health risks.

To keep up to date on what’s happening at the conference, check out the program online or follow the conversation on Twitter.

 

Preserve and protect? Exploring mosquito communities in urban mangroves

homebushbay_mangroves_jan2016

This is a special guest post from Dr Suzi Claflin. Suzi found herself in Sydney, Australia, (via Cornell University, USA) in 2015 to undertake a research project investigating the role of urban landscapes in determining mosquito communities associated with urban mangroves. She was kind enough to put this post together to celebrate the publication of our research in Wetlands Ecology and Management!

**

Sometimes you’ve got to make hard choices for the greater good. These situations can arise anywhere, but here – as usual – we are concerned with mosquitoes. There’s a balancing act carried out by public health officials and wetland managers trying to both preserve endangered habitat and protect human health. In this guest post, I’ll explain the science behind research I recently published in collaboration with Dr Cameron Webb, and suggest one way forward for addressing human and environmental health concerns in urban wetlands.

During my PhD, I studied how the landscape surrounding small-scale farms affects the spread of a crop virus and the community of insect pests that carry it. When I came to Australia to work with Cameron, I was surprised to find myself applying the same type of landscape ecology to mosquitoes and mangroves in urban Sydney.

The misfortune of mangroves

Mangroves are real team players. They provide a range of services to the surrounding ecosystem and to the humans lucky enough to live near them. Mangroves are extremely effective at protecting the shoreline (but this can sometimes be a problem). They prevent erosion by gripping the soil in their complex root systems and buffer the beach by serving as a wave break. By filtering sediment out of the water that flows over them, mangroves also prevent their neighbouring ecosystems, such as coral reefs and seagrass forests, from being smothered.

Despite all their good work, mangroves have an almost fatal flaw; they prefer waterfront property. Unfortunately for them, so do humans. Urban and agricultural development has eaten away at mangroves, leaving them highly endangered.

The mosquito menace

Mozzies are a public health menace, because they spread human diseases like Ross River virus (RRV). Because of this, public health officials rightly spend time considering how to supress mosquito populations in order to reduce the risk of disease transmission.

Here’s where things get tricky: mangroves are great for mosquitoes.

That leaves public health officials and wetland managers in a difficult position. On the one hand, mangroves are delicate, at-risk ecosystems that need to be preserved. On the other, mangroves and surrounding habitats potentially harbor both the animal carriers of the RRV (e.g. wallabies) and a load of mosquitoes, which means that people nearby may need to be protected.

How can we do both?

 

claflin_mangroves

Dr Suzi Claflin trapping mosquitoes in the mangroves along the Parramatta River, Sydney, Australia.

 

The potential power of prediction

This is a hard question to answer. One approach is prediction: using measurements of the environment, like rainfall and tide level, to estimate what the mosquito community will look like in a given region. The mosquito community determines what management actions, like spraying an insecticide, need to be taken, based on the threat it poses to public health.

We set out to explore how the way we use land (e.g. for residential areas or industrial areas) near urban mangroves affects the mosquito communities that live in those mangroves. The project involved dropping over retaining walls, slipping down banks, and tromping through muddy mangroves along the Parramatta River in Sydney. We set mosquito traps (billy cans of dry ice with a container on the bottom) and left them overnight to capture the mozzies when they are most active. We did this at two points in the summer, to see if there was any change over time.

We found that yes, the way we use land around a mangrove makes a difference. Mangroves with greater amounts of bushland and residential land in the surrounding area had fewer mosquitos, and fewer species of mosquitos. On the other hand, mangroves with greater amounts of industrial land surrounding them had a greater number of mosquito species, and those surrounded by greater amounts of mangrove had more mosquitos.

And, just to muddy the waters a bit more (pun intended), several of these relationships changed over time. These results show that although prediction based on the surrounding environment is a powerful technique for mangrove management, it is more complicated than we thought.

Another way forward: site-specific assessments

Our work suggests another way forward: site-specific assessments, measuring the mosquito community at a particular site in order to determine what management approaches need to be used. This is a daunting task; it requires a fair number of man-hours, and mangroves are not exactly an easy place to work. But it would be time well spent.

By assessing a site individually, managers can be confident that they are taking the best possible action for both the mangroves and the people nearby. It turns out that the best tool we have for striking a balance between environmental and public health concerns, the best tool we have for preserving and protecting, is information. In mangrove management—as in everything—knowledge is power.

Check out the abstract for our paper, Surrounding land use significantly influences adult mosquito abundance and species richness in urban mangroves, and follow the link to download from the journal, Wetlands Ecology and Management:

Mangroves harbor mosquitoes capable of transmitting human pathogens; consequently, urban mangrove management must strike a balance between conservation and minimizing public health risks. Land use may play a key role in shaping the mosquito community within urban mangroves through either species spillover or altering the abundance of mosquitoes associated with the mangrove. In this study, we explore the impact of land use within 500 m of urban mangroves on the abundance and diversity of adult mosquito populations. Carbon dioxide baited traps were used to sample host-seeking female mosquitoes around nine mangrove forest sites along the Parramatta River, Sydney, Australia. Specimens were identified to species and for each site, mosquito species abundance, species richness and diversity were calculated and were analyzed in linear mixed effects models. We found that the percentage of residential land and bushland in the surrounding area had a negative effect on mosquito abundance and species richness. Conversely, the amount of mangrove had a significant positive effect on mosquito abundance, and the amount of industrial land had a significant positive effect on species richness. These results demonstrate the need for site-specific investigations of mosquito communities associated with specific habitat types and the importance of considering surrounding land use in moderating local mosquito communities. A greater understanding of local land use and its influence on mosquito habitats could add substantially to the predictive power of disease risk models and assist local authorities develop policies for urban development and wetland rehabilitation.

Dr Suzi Claflin completed her PhD at Cornell University exploring environmental factors driving the spread of an aphid-borne potato virus on small-scale farms. She is now a postdoctoral research fellow at the Menzies Institute for Medical Research in Hobart, TAS. In her spare time she runs her own blog, Direct Transmission, focusing on disease and other public health issues (check it out here). To learn more about her doctoral research, follow this link!