Why do mosquitoes seem to bite some people more?

Back in 2015, I had an article published at The Conversation on why some people are more likely to be bitten by mosquitoes than others. It is one of the most commonly asked questions I get whenever I give public talks (or friends and family are quizzing me at summer BBQs).

This article was incredibly successful and has currently been read by approximately 1.4 million people. That is a lot of people. Hopefully the science of mosquito bites has got out there and actually helped a few people stop themselves or their family being bitten by mosquitoes!

The warm weather is starting to arrive here in Australia so I am sharing this once more for those wondering why they’re always the “mosquito magnet” among their friends…

Health Check: why mosquitoes seem to bite some people more

Image 20150123 2159 14n8u7p
There are up to 400 chemical compounds on human skin that could play a role in attracting mosquitoes.  sookie/Flickr, CC BY-SA

There’s always one in a crowd, a sort of harbinger of the oncoming mosquito onslaught: a person mosquitoes seem to target more than others. What is it about these unlucky chosen few that makes them mosquito magnets?

There are hundreds of mosquito species and they all have slightly different preferences when it comes to what or who they bite. But only females bite; they need a nutritional hit to develop eggs.

Finding someone to bite

Mosquitoes are stimulated by a number of factors when seeking out a blood meal. Initially, they’re attracted by the carbon dioxide we exhale. Body heat is probably important too, but once the mosquito gets closer, she will respond to the smell of a potential blood source’s skin.

Studies have suggested blood type (particularly type O), pregnancy and beer drinking all make you marginally more attractive to mosquitoes. But most of this research uses only one mosquito species. Switch to another species and the results are likely to be different.

There are up to 400 chemical compounds on human skin that could play a role in attracting (and perhaps repulsing) mosquitoes. This smelly mix, produced by bacteria living on our skin and exuded in sweat, varies from person to person and is likely to explain why there is substantial variation in how many mozzies we attract. Genetics probably plays the biggest role in this, but a little of it may be down to diet or physiology.

One of the best studied substances contained in sweat is lactic acid. Research shows it’s a key mosquito attractant, particularly for human-biting species such as Aedes aegypti. This should act as fair warning against exercising close to wetlands; a hot and sweaty body is probably the “pick of the bunch” for a hungry mosquito!

Probably the most famous study about their biting habits demonstrated that the mosquitoes that spread malaria (Anopheles gambiae) are attracted to Limburger cheese. The bacteria that gives this cheese its distinctive aroma is closely related to germs living between our toes. That explains why these mosquitoes are attracted to smelly feet.

But when another mosquito (such as Aedes aegypti) is exposed to the same cheese, the phenomenon is not repeated. This difference between mosquitoes highlights the difficulty of studying their biting behaviours. Even pathogens such as malaria may make us more attractive to mosquitoes once we’re infected.

Only females bite because they need a nutritional hit to develop eggs.
Sean McCann/Flickr, CC BY-NC-SA

Researchers are trying to unscramble the irresistible smelly cocktails on the skins of “mosquito magnets”. But the bad news is that if you’re one of these people, there isn’t much you can do about it other than wearing insect repellents.

The good news is that you may one day help isolate a substance, or mixes of substances, that will help them find the perfect lure to use in mosquito traps. We could all then possibly say goodbye to topical insect repellents altogether.

Attraction or reaction?

Sometimes, it’s not the bite as much as the reaction that raises concerns. Think of the last time the mosquito magnets in your circle of friends started complaining about being bitten after the event where the purported mosquito feast took place. At least, they appear to have attracted more than the “bite free” people who were also at the picnic, or concert or whatever.

But just because some people didn’t react to mosquito bites, doesn’t mean they weren’t bitten. Just as we do with a range of environmental, chemical or food allergens, we all differ in our reaction to the saliva mosquitoes spit while feeding.

People who don’t react badly to mosquito bites may think they haven’t been bitten when they’ve actually been bitten as much as their itchy friends. In fact, while some people attract more mosquito bites than others, there’s unlikely to be anyone who never, ever, gets bitten.

The problem is that people who don’t react to mosquito bites may all too easily become complacent. If you’re one of them, remember that it only takes one bite to contract a mosquito-borne disease.

Finally, there is no evidence from anywhere in the world that there is something you can eat or drink that will stop you being bitten by mosquitoes. No, not even eating garlic, or swallowing vitamin B supplements.

The ConversationPerhaps if we spent as much time thinking about how to choose and use mosquito repellents as we do about why mosquitoes bite our friends and family less than us, there’d be fewer bites all around.

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article was originally published on The Conversation. Read the original article.

 

Advertisements

Ross River virus in Melbourne, how did that happen?

aedesnotoscriptus

Health authorities in Victoria have been warning of mosquito-borne Ross River virus for much of the summer. The state is experiencing one of its worst outbreaks of the disease but cases have mostly been across inland regions. Now it’s hit Melbourne. How has this happened?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. There are usually about 5,000 cases across Australia. However, in 2015 there was a major spike in activity with around 9,000 cases reported. It is a common misconception that the disease is only found in northern regions of Australia. I’m often told “I heard the disease is moving south from QLD?” That’s not the case.

The virus is just as much a natural part of the Australian environment as the mosquitoes and the wildlife that maintain transmission cycles.

While there are generally more cases in northern Australia, nowhere is safe. Some of the largest outbreaks have occurred in southern regions of Western Australia, South Australia, Victoria and even Tasmania.

The virus is widespread but is generally associated with rural regions. A driving factor in determining the activity of Ross River virus is that more than just mosquitoes are involved in outbreaks. The virus is maintained in the environment in native wildlife, especially kangaroos and wallabies. Even when and where there are high numbers of mosquitoes, without wildlife, outbreak risk is low. This is the reason why any clusters of locally infected cases in metropolitan regions are typical in areas where there are wetlands, wildlife and mosquitoes occurring together. We’ve seen this on the urban fringe of Sydney and Perth in recent years.

The announcement of locally acquired cases in the suburbs of Frankston and Casey, in Melbourne’s south-east, has taken many by surprise. Should it have?

Victoria is no stranger to mosquitoes and outbreaks of mosquito-borne disease. There are mosquito surveillance and mosquito control programs in place in many regions and historically there have been major outbreaks of mosquito-borne disease. From freshwater flood plains of the inland to the tidally flooded estuarine wetlands of the coast, Victoria has diverse and often abundant mosquitoes. But cases in the metropolitan region are rare.

Victorian mosquitoes are not all bad but over a dozen different mosquito species can spread Ross River virus.

The region where these cases have been identified are in proximity to bushland and wetland areas. There is no doubt plenty of mosquitoes and suitable wildlife too. While this is the first time local transmission has been documented, that doesn’t mean the virus hasn’t circulated in the past, or even that cases may have occurred.

For individuals infected but only suffering mild symptoms, the illness can be easily discounted as nothing more than a mild case of the flu. Without appropriate blood tests, these cases never appear in official statistics. For this reason, many mosquito researchers believe that the number of notified cases across the country is just the tip of the iceberg with many milder infections going diagnosed.

But why in Melbourne now?

It is difficult to know for sure. The two most likely explanations are that either environmental conditions were ideal for mosquitoes and suitable populations of wildlife were present so that the virus was much more active in the local environment than previously. The second explanation is that the virus may have been introduced to the region by a traveller or movement of wildlife. In much the same way Zika virus made its way from SE Asia to South America in the last few years, mosquito-borne viruses move about in people and animals, much less so than mosquitoes themselves (but that isn’t impossible either).

Victoria (as well as inland NSW) is experiencing one of its largest outbreaks of Ross River virus on record following significant flooding of inland regions. With so much activity of the virus in the region, perhaps an infected bird or person travelling to the metropolitan region brought the virus with them. When bitten by local mosquitoes, the virus started circulated among local mosquitoes and wildlife.

Most people infected by Ross River virus are bitten by a mosquito that has previously fed on a kangaroo or wallaby.

Once it’s made its way to metropolitan regions, the virus can be spread from person to person by mosquitoes. Common backyard mosquitoes, especially Aedes notoscriptus, can transmit the virus but as these mosquitoes are not particularly abundant, don’t fly vary far and will just as likely bite animals as humans, they’re unlikely to drive major urban outbreaks of the disease. This mosquito doesn’t pack the same virus-spreading-punch as mosquitoes such as Aedes aegypti that spreads dengue, chikungunya and Zika viruses. Aedes aegypti isn’t in Victoria.

We’re unlikely to see significant spread of Ross River virus across Melbourne but that doesn’t mean Victorians should be complacent. As there is no cure for Ross River virus disease, the best approach is to avoid being infected in the first place. Preventing mosquito bites is the best approach. For my tips and tricks on avoiding mosquito bites see this recent paper in Public Health Research and Practice as well as my article for The Conversation.

Keep an eye on the website of Victoria Health for more information.

 

 

 

 

 

Do outbreaks of mosquito-borne disease always follow floods?

webb_deepwater

Water, water everywhere…and mosquitoes soon to follow. It makes sense that with more water you’ll get more mosquitoes and with more mosquitoes you’ll get more mosquito-borne disease. Right? Well, not always.

With floods hitting parts of inland NSW, health authorities have issued warnings about mosquitoes and mosquito-borne disease.

Western NSW, has been substantially impacted by flooding this month and the region has been declared a natural disaster zone. The Lachlan River at Forbes has reached a level not seen for 25 years. There is a lot of water about. 35,000 mega litres of water has also been released from Wyangala dam resulting in further flooding. There could be more to come as “Superstorm 2016” continues to bring rain to south-east Australia. Evacuations continue.

The flooding has come at a time when the weather in warming up and there are already reports of mosquito numbers increasing. The biggest concern is that once the flood water recede, how long will pools of water remain, have mosquitoes got a “jump start”on the season?

On the other side of the world, Hurricane Matthew is threatening Florida. The Bahamas and Haiti have already been hit and more than 2 million people in the US have been told to evacuate their homes. Flooding is expected.

floods_thesun_1950

Mosquitoes need water

There is no doubt that mosquito populations can increase rapidly following flood. There is even a group of mosquitoes commonly called “floodwater mosquitoes“. The desiccation resistant eggs of these mosquitoes are laying dormant in the cracks and crevices of flood plains, just waiting for the water to arrive. When it floods, the eggs hatch and in about a week or so, swarms of mosquitoes emerge.

For the most part, it isn’t immediately following the flooding, but in the weeks and even months following that can provide the most ideal conditions for mosquitoes. If temperatures aren’t high enough to drive rapid evaporation of ponding (or if additional rainfall keeps them topped up), mosquitoes can start building impressing population abundances. With more mosquitoes, the risk of mosquito-borne disease outbreak can increase.

bom_rainfalljulyseptember2016

Rainfall records provided by the Bureau of Meteorology indicate that over the three months to September 2016, some regions of NT, QLD, NSW and Victoria received some of their highest rainfall on record for the period. (Bureau of Meterology)

A look back to floods and mosquito surveillance

In 2011-2012, QLD, NSW and Victoria saw incredible flooding. For those of us working in the field of mosquito-borne disease, we’re well aware of what that flooding can cause. Our attention was sparked when stories starting coming out from locals about this being the biggest flooding since the 1970s. Why was this important? Following flooding in the 1970s, we saw one of the biggest outbreaks of the potentially fatal Murray Valley encephalitis virus Australia has seen. This outbreak, and the response to the actual and potential health impacts, was essentially the genesis of many mosquito-borne disease surveillance programs across the country.

One of those programs was the NSW Arbovirus Surveillance and Mosquito Monitoring Program. Following the flooding in early 2012, there was a huge jump in mosquito populations in western NSW and one of the largest collections of mosquitoes in the history of the program was recorded with over 18,000 mosquitoes collected! Fortunately, we didn’t see any substantial activity of Muray Valley encephalitis virus but elsewhere in Australia, cases were reported.

mve_1974

Mosquito-borne disease outbreaks need more than just mosquitoes

There is little doubt you need mosquitoes about for pathogen transmission. However, for many mosquito-borne diseases, the pathogens that cause the illness in people are naturally found in wildlife. Person to person transmission may occur but for pathogens such as West Nile virus, Ross River virus or Murray Valley encephalitis virus, the mosquitoes that inject their virus-filled saliva into people have bitten birds or mammals previously.

The role of wildlife is important to consider as the flooding may influence mosquito populations but they can also influence wildlife. While kangaroos and wallabies may be adversely impacted by floods, flood waters can provide a major boost for waterbirds.

In some instances, as is the case for Murray Valley encephalitis virus, floods provide ideal conditions for both mosquitoes and birds!

HexhamSwamp_stilts

Do floods really cause outbreaks of mosquito-borne disease?

There are few studies that have demonstrated that outbreaks of mosquito-borne disease always occur following floods.

Studies in North America had previously concluded that there wasn’t a direct link between hurricanes and flooding and mosquito-borne disease. But, that doesn’t mean there won’t potentially be a boost in nuisance-biting mosquitoes following flooding.There is often widespread spraying to control these pest mosquito populations.

Interestingly, after Hurricane Katrina hit New Orleans in 2005, there was an increase in mosquito-borne disease with more than a 2-fold increase in West Nile neuroinvasive disease. However, other reports noted no significant increase in cases of either West Nile or St. Louis encephalitis viruses. Surveillance for 6 weeks following the hurricane, authorities found no arboviruses circulating in local mosquito populations. These results highlight that much more than water and mosquitoes are required for outbreaks of disease.

In Australia, a recent review looked at the influence of flooding on cases of Ross River virus disease. They found that the evidence to support a positive association between flooding and RRV outbreaks is largely circumstantial. The trouble in predicting outbreaks of Ross River virus disease is that there can be complex biological, environmental and climatic drivers at work and, irrespective of local flooding, there may be other region-specific issues that either increase or decrease the potential for an outbreak.

What should we expect in Australia as summer approaches?

There is no doubt mosquito repellent will come in handy over the coming months. There are already reports of increased mosquito populations in some parts of the country. While nuisance-biting impacts will be a worry, if mosquito populations further increase following flooding, authorities need to remain mindful of a range of other health risks too.

The good news is that unless higher than normal mosquito populations persist into the warmer months, we may not see major outbreaks of disease. It typically isn’t until November-December that we start to see pathogens circulate more widely among wildlife and mosquitoes. Hopefully, if some hot weather arrives, the flood waters will quickly evaporate and abundant mosquitoes populations won’t continue.

Current outlooks suggest that between now and December 2016, south-eastern regions of Australia are likely to receive above average rainfall. Temperatures, though, are likely to be a little cooler than normal. We’re probably lucky that this cooler weather will keep the really big mosquito population increases that we saw a few years ago at bay.

On balance, we’re expecting plenty of mosquitoes to be about as summer starts, hopefully not “mozziegeddon” but enough to ensure the community should stay aware of the health risks associated with mosquito bites and how best to avoid their bites.

Have you seen mosquitoes about already this season? Join the conversation and tweet some shots of local mosquitoes!

Social media and blood suckers showcased at the International Congress of Entomology

instagram_wetlands_webb

Digital technology is changing a lot about how we undertake entomological research and communicate the results of that research to the community and policy makers.

This week in Orlando, Florida, is the International Congress of Entomology (ICE). A huge gathering of entomologists from around the world. While it was a great pleasure to be invited to participate, I couldn’t get over there this time.

I will, however, have a chance to present my work in the Symposium “Entomology in the Digital Age”  Friday, September 30, 2016 (01:30 PM – 04:45 PM), Convention Centre Room W222 A.

In the presentation I’ll share some of the reasoning behind my use of social media to engage the community with both entomological research and public health communication. Most importantly, it will focus on some of the metrics I’ve recorded alongside my use of social media, maintaining a blog of research and writing for outlets such as The Conversation.

I’ve written about my use of social media and how it can help extend the reach of public health messages and presented on the topic alongside a range of great speakers at the 2014 Entomological Society of America meeting in Portland.

This time around, technology is playing an even more direct role in my presentation! I’ve pre-recorded my presentation and it will be shown to the audience on the day among other presentations. I’ll also be checking into the session to answer questions. Despite the fact I’ll need to be up around 1:30am due to time differences, it should be fun.

See the abstract below…

Taking entomological research from the swamps to the suburbs with social media

Cameron E Webb

Connecting scientists and the community is critical. This is particularly the case for medical entomologists working in the field of mosquito-borne disease where the translation of entomological research into improved public health outcomes is a priority. While traditional media has been the mainstay of public health communications by local authorities, social media provides new avenues for disseminating information and engaging with the wider community. This presentation will share some insights into how the use of social media has connected new and old communications strategies to not only extend the reach of public health messages but also provide an opportunity to promote entomological research and wetland conservation. A range of social media platforms, including Twitter, Instagram, and WordPress, were employed to disseminate public health messages and engage the community and traditional media outlets. Engagement with the accounts of traditional media (e.g. radio, print, television, online) was found to be the main route to increased exposure and, subsequently, to increased access of public health information online. With the increasing accessibility of the community to online resources via smartphones, researchers and public health advocates must develop strategies to effectively use social media. Many people now turn to social media as a source of news and information and those in the field of public health, as well as entomological research more generally, must take advantage of these new opportunities. doi: 10.1603/ICE.2016.94611


If you’re at ICE, you can also catch up with my PhD student David Lilly who’ll be presenting our research into the development of insecticide resistance in bed bugs as part of the symposium “New Insights into Biology, Resistance Mechanisms, and the Management of the Modern Bed Bug” Friday, September 30, 2016, 01:30 PM – 04:45 PM, Convention Center, West Hall F4 (WF4).

Novel insecticide resistant mechanisms in the common bed bug, Cimex lectularius

David Lilly, Cameron E Webb and Stephen Doggett

Introduction: Research on field strains of Cimex lectularius from Australia has identified widespread resistance to pyrethroid insecticides, but variability in the magnitude expressed. To determine if differences in resistance mechanisms exist, collected strains were examined for the presence of metabolic detoxification and/or cuticle thickening. Methods: The presence and relative contribution of detoxifying esterases or cytochrome P450 monooxygenases were assessed. Bed bugs collected from Parramatta (NSW), Melbourne (VIC) – 2 strains, ‘No.2’ and ‘No.4’, and Alice Springs (NT) were exposed in topical bioassays employing deltamethrin and two pyrethroid synergists: piperonyl butoxide (PBO) and EN16/5-1. PBO inhibits both monooxygenases and esterases, whereas EN16/5-1 will inhibit esterases only. Thus in a comparative bioassay, the results can infer the dominant enzyme system. The Parramatta strain was then selected to study the potential presence of cuticle thickening. Nine-day-old male bed bugs were exposed to filter papers treated with the highest label rate of Demand Insecticide®(200mL/10L of 25g/L lambda-cyhalothrin) and were grouped according to time-to-knockdown (< 2 hours, ≥ 4 hours, and survivors at 24 hours). Measurements of mean cuticle thickness at the transverse midpoint of the second leg tarsus were taken under electron microscope. Results/Conclusion: All strains possessed resistance that was inhibited by the synergists, with the Parramatta and Melbourne No.2 indicating esterase-dominance, and Alice Springs and Melbourne No.4 indicating cytochrome P450 monooxygenase-dominance. Cuticular measurements demonstrated that bed bugs surviving deltamethrin exposure had significantly thicker cuticles, denoting a novel form of resistance in these insects. doi: 10.1603/ICE.2016.92553

 

You can also see Stephen Doggett (co-author and photographer of A Guide to Mosquitoes of Australia) speaking on photographing mosquitoes to in the symposium “Insect Photography Symposium: Bringing the Small to the World.


You can join the conversation on Twitter and keep an eye on all the fun in Orlando by keeping an eye on the tweet stream!

 

Summer summary of mosquito media madness

Webb_ABC24_Zika_Media

Summer is always a busy time for me. As well as plenty of time sloshing about in the wetlands, there is often lots of interest from mosquito-curious media. There has been some intense bursts of activity in previous summers but the 2015-2016 was particularly interesting.

I certainly covered some new ground this summer. I responded to over 160 individual media requests in the past 6 months. From flies and food safety to the emergence of Zika virus. Here is a wrap from my media adventures and some valuable lessons learned for future science and public health communication.

IMG_9941

The good news of new virus discoveries

Usually, the discovery of a new mosquito-borne virus brings with it new concern for public health. This time though, there was some good news.

Towards the end of 2015, a paper reporting on a collaborative research project between University of Queensland, QLD Health and University of Sydney was published in Virology. This was the first publication detailing the discovery of Parramatta River virus, an insect specific virus that exclusively infects the mosquito Aedes vigilax. This virus does not infect people and poses no health risk.

A joint media release was issued by University of Queensland and University of Sydney and there was plenty of media attention. Not surprising given the usual negative associations with mosquito-borne pathogens!

There were dozens of articles, much of the attention focused on the team at University of QLD. Dr Jody Hobson-Peters was kept busy with local media including ABC and Brisbane Times. It was a great experience sharing the research with colleagues in Queensland, particularly great seeing so much exposure for PhD student Breeanna McLean and her newly published research.

I was surprised at how little attention there was in the news from Sydney media. The lesson here though was more about bad timing than uninteresting research. A couple of weeks after the initial media release, I forwarded around a few emails and sent out a couple of tweets and next thing you know, we made the front page of the local newspaper, the Parramatta Advertiser (see above). It was some great local coverage, not only about the virus discovery but it also provided an opportunity to raise awareness of mosquitoes and mosquito-borne disease on the eve of summer!

Lesson learned: A good reminder that if your research isn’t picked up immediately, give it another shot a few weeks later. Timing may make all the difference but perseverance does too!

flies_conversation_webb2

To stop sickness, swat or spray

Just in time for Christmas lunch and summer holiday picnics, I published an article on flies and food safety at The Conversation. I really expected this article to slip under the radar of most people. Coming out on Christmas eve doesn’t seem likely many would be clicking about on the internet but within a few days over 600,000 people had clicked on the piece!

Many of those clicks were thanks to the article being shared by IFLS but there was also plenty of interest from local media and I was busy with interview requests from ABC Local Radio across the country. Who doesn’t love hearing about how flies poop and vomit on your food? I was even interviewed by Grey Nomad Magazine!

Lesson learned: Applying a little science to seasonal urban myths and common uncertainties can prove popular and may be a good opportunity to promote a little science!

wetweather_Jan2016

Rain, rain everywhere with mozzies soon to come

With all the talk of El Nino and predictions of a hot and dry summer for the east coast of Australia, the summer was actually reasonably mild and extremely wet. Sydney was particularly battered by a series of storms and intense rainfall early in 2016.

More water generally means more mosquitoes. In response to the rain, many media outlets were interested in chatting about the prospects of a bumper mosquito problem. As well as talking about the prospects of an increase in mosquito-borne disease risk, it was a great opportunity to talk about personal protection measures.

There were some radio, print and tv spots that provided opportunities to talk about how to choose and use the right repellents.

sevennews_jan2016

In 2015 I published a paper in the Medical Journal of Australia explaining that health authorities need to provide more guidance on how the community can get mosquito repellents working more effectively.

Typical health warnings and media release from health authorities (usually limited to grabs on news bulletins) but when there is an opportunity to do longer form radio interviews, there is a chance to put an emphasis on aspect of public health messages. The hook to get these longer spots is giving more than just warnings, by mixing up some interesting things about mosquitoes, you can catch a little extra attention and sneak in the public health messages between the fun and fascinating facts about mosquitoes!

One news outlet was really insistent in grabbing a hold of me for some comments ahead of the evening bulletin. They even sent a crew to meet me in the city while I was taking the kids along to the Sydney Festival!

Lesson learned: When doing tv for the evening news, it is ok to wear a t-shirt, shorts and runners just so long as you have a rain jacket handy to make you like like you could have just stepped straight out of the wetlands!

Zika_TheProject_Jan2016

From African forests to South American cities

While many of us were keeping our eyes on the developing outbreak of mosquito-borne Zika virus in South America towards the end of 2015, it wasn’t until February 2016 that the situation really grabbed the attention of the world’s media.

In late January, I published a piece at The Conversation titled “Does Zika virus pose a threat to Australia?” It prompted a little interest but it was the media conference coordinated by University of Sydney Media and Communications together with Australian Science Media Centre (AusSMC) that coincided with the announcement of the World Health Organization that the Zika virus outbreak was a Public Health Emergency of International Concern.

Together with colleagues from the University of Sydney’s Marie Bashir Institute of Infectious Disease and Biosecurity, I spoke at a media conference broadcast nationally on ABC News 24. There was a huge amount of media stories stemming from this media conference with over 500 individual articles identified across radio, tv, print and online. During the days and weeks following, I felt like I was spending more time at the ABC studios in Ultimo than I was in our lab! There were days when I spent hours on the phone doing radio interviews.

There were a couple of great longer form interviews that I really appreciated the opportunity to contribute to such as ABC Radio National’s Health Report and Rear Vision. There were also a couple of podcasts too, check out Science on Top and Flash Forward.

This flood of media requests also exposed me to a few more new experiences. There were live tv appearances on Sunrise, ABC News 24 and Sky News but probably one of the most interesting was my spot on Channel Ten’s The Project. It was interesting for a number of reasons.

Firstly, I was warned early on that one of the guests on the panel was comedian Jimmy Carr, a somewhat controversial figure notorious for jokes a little too close to bad taste. I’m not typically one to play the “wacky scientist” during interviews but what I was most cautious of was not being seen to be treating a very serious disease outbreak too lightly. I was determined to play the straight guy. In the end the interview turned ok but there were a couple of awkward moments that, luckily, ended up being edited out.

Secondly, simply doing the interview was unusual. It was a pre-recorded interview with me in a tiny room at the Channel Ten studio in Sydney and the panel in the Melbourne studio. I was sitting in front of a green-screen, staring down the camera with an earpiece blasting away in my ear. I have done live crosses before but they’re all been one-on-one interviews. This time it was with the panel and I found it incredibly difficult to get the feel for each of the panelists when they were asking questions. Missing that eye-to-eye contact was a disconcerting experience. Luckily, all turned out well in the end.

Lesson learned: Lots (I mean LOTS) learned while dealing with the interest in Zika virus! Probably another post in itself…but I would say that managing this volume of media wasn’t easy and it did eat up a lot of time (even though communicating public health messages is central to my “day job”) but this was important work.

Webb_SkyNews_Jan2016

A morning with Dr Karl!

When it comes to science communicators in Australia, there are few with a higher profile than Dr Karl Kruszelnicki. We’d spoken on a number of occasions about mosquitoes but I’d never actually met him in person before. “Dr Karl” invited me to hang out for a morning recording interviews for ABC News 24, ABC Local Radio and also guest on his national “Science Talk” segment on Triple J’s Mornings Show with Zan Rowe.

The experience of a behind-the-scenes perspective on Karl’s hectic schedule and how he manages the frenetic pace of work at the ABC was an eye opener. Doing the hour long segment on Triple J was great, enlightening to get questions from a slice of the Australian community I don’t usually cross paths with when doing the usual community engagement. I good reminder of just how much anxiety there can be within the community when news of international disease outbreaks occur. Not surprising given the thousands of Australians travelling to South America each month….with more to come later this year when the Rio Olympic Games kick off!

You can listen to the segment here and you can also follow Dr Karl on Twitter.

Lesson learned: From a public health perspective, this is a great reminder that the concerns and anxieties around infectious disease can change depending on the sector of the community you’re dealing with. The core messages may remain the same but you’ll always need to consider your audience when fine tuning your public health messages.

TripleJ_Zika_Feb2016

So, was all this worth it?

It was stressful. It was fun. It eroded much of my time that may have been spent in other ways but I see this as “doing my job” perhaps a little more than pure research scientists do. But how does all this convert into tangible metrics. How do you measure the reach and economics of all these media activities?

I’m fortunate to be supported by the University of Sydney media and communications team that helps out by providing some data on the metrics of my media activities each summer. What was all this time and effort worth?

Between November 2015 and Match 2016, I was quoted in over 160 media items. This adds up to a cumulative audience of around 8.9 million people, that is quite some reach! How much was it worth? Based on current advertising rates, about $1.6 million.

I’ve written before about how we can better value science and public health communication. Collecting these types of metrics can be useful for a range of purposes. Recently, I’ve been including media engagement as an “in kind” contribution to grant applications with valuation calculated on average media coverage that may be expected.

The lesson here is to take the time to record your media activities, not just so you have a list to demonstrate quantity but also so you can assess audience and value to your media activities. Work with your media and communications departments to see what extra information you can collect.

Got any other tips? Share them via Twitter!

 

 

 

 

 

Can social media help translate research to practice and promote informed public health messages?

I’m a Senior Investigator with the Centre for Infectious Diseases and Microbiology – Public Health. One of our primary focuses is translating research into improved public health outcomes. With NSW Population Health and Health Services Research Support Program assisting our work, we’re exploring new ways to achieve this objective. My experience of using social media was selected to be showcased among other case studies in 2015. 


Nuisance-biting mosquitoes and mosquito-borne disease are concerns for local authorities in Australia. 2015 saw the largest outbreak of mosquito-borne Ross River virus disease for more than 20 years with over 9,500 cases nationwide. In NSW, there were 1,633 cases compared to the annual average since 1993 of 742 cases per year. Notwithstanding the current outbreak, other endemic, as well as exotic, mosquito-borne pathogens represent future threats to public health.

As there is no large-scale mosquito control program in NSW, reducing the contact between mosquitoes and people is primarily achieved through the promotion of personal protection measures. NSW Health promotes the use of topical insect repellents in combination with behavioural change to avoid natural mosquito habitats and the creation of mosquito habitats around the home. This information is typically provided in the form of posters, brochures, online factsheets, and seasonal or outbreak-triggered public health messages issued by Local Health Districts or the NSW Ministry of Health.

With the emergence of new communications technologies, particularly the rise in popularity of social media, there are new opportunities for public health communications.

The aim of the current research was to determine the reach of public health messages through social media by tracking engagement, audience and relative value as assessed by media monitoring organisations and metrics provided by hosting services of social media platforms.

Assessing activities and processes

Dr Cameron Webb (CIDM-PH) has focused much attention on filling the gaps between current public health messages and findings from recent research into topical mosquito repellents.[1] For example, while public health messages provide accurate information on the insect repellents that provide the best protection, there is a paucity of information provided on how best these products should be used by individuals and those they care for.

Dr Webb’s engagement with mass media, online media (e.g. The Conversation), a personal blog (e.g. Mosquito Research and Management) and social media (e.g. Twitter) has resulted in substantial exposure of focused and informed public health messages. From mid-2014 through to the end of 2015, Dr Webb participated in over 80 mass media articles and interviews in print, online, radio and television media with public health information reaching an estimated audience of over 10 million people.[2] The focus of his messaging around mosquito-borne disease was to highlight the best way for the community to choose and use mosquito repellents; stressing the importance of active ingredients and application methods. This fills a gap in the current provision of public health information while also augmenting public health alerts and messages associated with the 2015 outbreak of Ross River virus disease.

Social media has become a “go to” source of information for much of the community. Information shared on Facebook, Twitter, Instagram, and YouTube has the potential to shape the habitats and behaviour of the community. Dr Webb is active on Twitter (currently followed by over 4,500 people); he uses the platform to engage with the social media accounts of journalists and broadcasters to establish a voice of authority in the field of mosquito-borne disease prevention and extend the reach and exposure of public health messages broadcast through mass media. Using Twitter to share links to informed articles following interviews reached hundreds of thousands of people by being shared by the social media accounts of journalists, media outlets, government organisations and community groups. During the 2014-2015 summer, tweets by Dr Webb reached an estimate 1.28 million people.[3]

Dr Webb regularly writes open access articles on his website, attracting around 250 daily visitors with over 117,000 article views.[4] In addition to his personal website, Dr Webb regularly contributes articles to The Conversation (a website for academics to share expert opinion and write about their latest research). His articles have attracted over 120,000 readers. However, one article “why mosquitoes seem to bite some people more” (published 26 January 2015) has alone been read by over 1.3 million people.[5] This “non-scholarly” writing not only establishes CIDM-PH scientists as authorities in public health matters but can also assist in directing the public to official health guidance provided on official websites and other sources.

Dr Webb’s activities provide a framework for how health authorities may engage with social media to extend public health messages. Organisations or individuals can connect health authority information with the community through media outlets. He has been invited to share his experiences in this field at local and international conferences and workshops including those coordinated by the Public Health Association of Australia, Australian Entomological Society and Entomological Society of America. In addition, Dr Webb has been invited to provide lectures on the benefits of social media for public health advocacy to undergraduate and post-graduate students at the University of Sydney.

While traditional messaging provided by health authorities will remain a staple in public health campaigns, social media provides a connection between traditional and emerging media and communication organisations. This increased connectivity between public health advocates, the media and community has the potential to greatly improve the awareness of mosquito-borne disease and increase the rate of uptake and application of strategic personal protection measures.

References

  1. Webb C.E. (2015). Are we doing enough to promote the effective use of mosquito repellents? Medical Journal of Australia, 202(3): 128-129.
  2. Estimated audience reported by Kobi Print, Media and Public Relations, University of Sydney, 23 April 2015, based on data provided by media monitoring organisation isentia.
  3. Estimated from total “tweet impressions” for the period October 2014 through April 2015 provided by Twitter Analytics (https://analytics.twitter.com/user/Mozziebites/home accessed 30 April 2015)
  4. Data provided by WordPress statistics (accessed 18 December 2015)
  5. Data provided by The Conversation metrics (accessed 18 December 2015)

This article was originally published by NSW Health showcasing some of the work within the NSW Population Health and Health Services Research Support Program. You can see the original article here.

Zika virus: Resources, references and recommendations

zika_response

The following is a collection of almost 100 links to news stories, resources, references and recommendations associated with mosquito-borne Zika virus and the current outbreak in the Americas.

What is Zika? What are the health threats and why an outbreak now?

Zika virus (CDC). Essential resource. Click.

Zika virus (WHO). Essential resource. Click.

Zika virus spreading explosively, says World Health Organisation (The Guardian). Coverage of statement by WHO Director General that the explosive outbreak of Zika virus in the Americas as “deeply concerning” and that an emergency committee has been convened. Click.

WHO Director-General summarizes the outcome of the Emergency Committee regarding clusters of microcephaly and Guillain-Barré syndrome (WHO). Click.

Zika virus declared a global health emergency by WHO (ABC News). Click.

Zika Virus Spreads to New Areas — Region of the Americas, May 2015–January 2016 (CDC). Click.

WHO early response to Zika virus praised by Australian experts (The World Today). Click.

First report of autochthonous transmission of Zika virus in Brazil (Memórias do Instituto Oswaldo Cruz). Click.

How a Medical Mystery in Brazil Led Doctors to Zika (New York Times). A summary of how health officials investigating a spike in cases of birth defects put together the link to a mosquito-borne disease. Click.

Explainer: where did Zika virus come from and why is it a problem in Brazil? (The Conversation). A good, brief summary of the emergence of Zika virus in Brazil and the health risks it poses. Click.

Zika virus outbreak: What you need to know (New Scientist). A good summary of issues associated with Zika virus outbreak. Click.

Zika outbreak: What you need to know (BBC). A good summary of what is known of Zika virus and its health risks. Click.

What to Know About Zika Virus (The Atlantic). Click.

Zika virus, explained in 6 charts and maps (Vox). Useful collection of infographics on Zika virus, current and historic outbreak distributions and health impacts. Click.

An Illustrated Guide To The Zika Outbreak (Huffington Post). Click.

Why it’s wrong to compare Zika to Ebola (The Conversation). Whats the difference between Ebola and Zika viruses? What are the implications of outbreaks and declarations of public health emergencies? Click.

Zika fever: panic won’t help us (The Guardian). Editorial highlighting the horror and unexpectedness of the Zika virus outbreak in Brazil and how we should move forward in mosquito control. Click.

What we still don’t know about Zika virus (Mashable). There are plenty of gaps in our understanding of Zika virus. Click.

The human cost of Zika is clear, but will Brazil’s economy suffer too? (The Conversation). Outbreaks of infectious diseases can have greater impacts than the human illness alone. Click.

aedes_albopictus_SteveDoggett

Zika virus and its vectors

Mosquitoes: The Zika vector (Radio National). Why do we need to know how many mosquitoes can spread Zika virus and what is it about the mosquitoes that do that make them such an important pest? Click.

Natural-born killers: mosquito-borne diseases (SMH). What is it that makes mosquitoes such effective vectors of pathogens? Click.

Zika Virus in Gabon (Central Africa) – 2007: A New Threat from Aedes albopictus? (PLOS Neglected Tropical Diseases). Click.

Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus (PLOS Neglected Tropical Diseases). Click.

Aedes (Stegomyia) albopictus (Skuse): A Potential Vector of Zika Virus in Singapore (PLOS Neglected Tropical Diseases). Click.

Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus (BMC Infectious Diseases). Click.

Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage (PLOS Neglected Tropical Diseases). Click.

Molecular Evolution of Zika Virus during Its Emergence in the 20th Century (PLOS Neglected Tropical Diseases). Click.

microcephaly_BBC

The spike in cases of microcephaly and its suspected links to Zika virus infection of those pregnant has been raising greatest concern. (Image: BBC)

Zika virus, pregnancy and microcephaly

Possible Association Between Zika Virus Infection and Microcephaly — Brazil, 2015 (CDC). Click.

Microcephaly in Brazil: is it occurring in greater numbers than normal or not? (Virology Down Under). Great post highlighting the gaps in our understanding of links between microcephaly and Zika virus. Click.

Proving that the Zika virus causes microcephaly (The Conversation).  What questions must be answered to confirm a link between Zika virus and microcephaly. Click.

Interim Guidelines for Pregnant Women During a Zika Virus Outbreak — United States, 2016 (CDC). Click.

CDC: Link between Zika, microcephaly looks “stronger and stronger” (Reuters). Click.

Facts about Microcephaly (CDC). What are the impacts, causes and treatments associated with microcephaly? Click.

Zika virus outbreak raises Pacific, Americas travel concerns for pregnant women (Stuff NZ). Implications for those travelling in Pacific while pregnant. Click.

Safely avoiding mosquito bites when pregnant (Mosquito Research and Management). My tips on safe and effective avoidance of mosquito bites while pregnant. Click.

13 Things Pregnant Women Should Actually Know About Zika (Buzzfeed). Some good advice, most importantly, don’t panic. Don’t even panic if you’re pregnant and bitten by a mosquito. Click.

IMG_5671

Zika virus and the threat to Australia

Does Zika virus pose a threat to Australia? (The Conversation). An overview of why, and why not, Zika virus poses a risk to Australia. Click.

The Threat to Australia: The Rise Of Zika Virus (Popular Science). Article from 2014 highlighting potential risk to Australia of Zika virus following detection of imported cases. Click.

Zika Virus Explained: Aussie Mozzies, Bali Risks And Pregnancy (Huffington Post). Good summary of risks posed to Australia and Australian travellers. Click.

Zika virus: Risk of a widespread outbreak in Australia ‘low’, experts say (ABC News). A summary of reasons why there won’t be a major outbreak of Zika virus in Australia. Click.

Zika talkback with Dr Karl on Triple J (ABC). I join Dr Karl for talkback on Zika virus, advice to travellers and the risks of outbreak in Australia. Click.

Zika virus alert (NSW Health). Factsheet on Zika virus and risk to NSW. Click.

Little chance of Zika outbreak in NSW (Sky News). There is unlikely to be a major outbreak of Zika virus across Australia’s most populated region. Click.

Two Aussies confirmed with Zika as US records first case of virus transmitted through sex (The Mercury). Click.

Zika virus mosquitoes found in Sydney: Airport increases insecticide spraying of incoming passengers (Daily Telegraph). Report of recent detection of Aedes aegypti at Sydney airport by Department of Agriculture and Water Resources. Click.

Queensland announces $1.4 million program to fight Zika. (Brisbane Times). Queensland authorities announce response plan; increasing monitoring and research into Zika virus.  Click.

Zika_warningQLD
Zika virus entering Australia

Zika virus and Travel Alert for Australians (Smart Traveller). Click.

Imported Zika Virus Infection from the Cook Islands into Australia, 2014 (PLOS Current Outbreaks). Click.

Zika Virus Infection Acquired During Brief Travel to Indonesia (Am J Trop Med Hyg). Published report from 2013 of Australian traveller exposed to Zika virus in Indonesia. Click.

Aussie diagnosed with Zika after Bali monkey bite, experts warn of missed cases (SMH). Report of 2015 case os suspected infection following monkey bite in Bali. Click.

Zika Virus Infection In Australia Following A Monkey Bite In Indonesia (Southeast Asian Journal of Tropical Medicine and Public Health). Abstracted from published case report of suspected Zika virus infection following monkey bite. Click.

Six cases of Zika virus in Australia last year as pregnant women warned not to travel (SMH). Summary of recent imported cases of Zika virus infection in Australian travellers. Click.

Health Department confirms WA Zika case (The West Australian). Report of imported case of Zika virus infection in returning traveller to Western Australia. Click.

Zika virus: Queensland woman, child confirmed as contracting illness (ABC News). Imported cases of Zika virus infection with travellers returning to QLD from El Salvador. (ABC News). Click.

Hawaii_1
Zika outbreaks in the Pacific

Zika Virus Outside Africa (Emerging Infectious Diseases). Summary of outbreaks in regions outside Africa with specific discussion of the first outbreak in Pacific. Click.

Zika Virus Outbreak on Yap Island, Federated States of Micronesia (New England Journal of Medicine). Click.

Zika virus: following the path of dengue and chikungunya? (The Lancet). Good paper, including useful maps, of activity of three critical mosquito-borne pathogens. Click.

Rapid spread of emerging Zika virus in the Pacific area (Clinical Microbiology and Infection). Publication reporting on the 2013 outbreak of Zika virus in the Pacific. Click.

Notes on Zika virus – an emerging pathogen now present in the South Pacific (Australian and New Zealand Journal of Public Health). An article assessing the risks of Zika virus to New Zealand. Although no suitable vectors exist there, a relatively larger volume of infected travellers would be expected to occur given the strong links to Pacific Islands. Click.

Tonga declares Zika outbreak (Sky News). Zika is impacting more regions than the Americas in 2016. Click.

Australia to help Pacific fight Zika (SBS News). How can Australian authorities take their expertise in mosquito monitoring, mosquito control and vaccine development to assist outbreak of Zika virus. Click.

safesex

Zika virus and sex: An unusual route of transmission

Probable Non–Vector-borne Transmission of Zika Virus, Colorado, USA (Emerging Infectious Diseases). First documented case of transmission of Zika virus through direct contact between people. Click.

Potential Sexual Transmission of Zika Virus (Emerging Infectious Diseases). Publication from 2015 on suspected sexual transmission of Zika virus. Click.

Zika virus infection ‘through sex’ reported in US (BBC). Suspected case of sexually transmitted Zika virus in Texas in 2016. Click.

CDC: To avoid Zika exposure, consider no sex (The Washington Post). Coverage of CDC guidance on avoiding sexual transmission risk of Zika virus. Click.

Interim Guidelines for Prevention of Sexual Transmission of Zika Virus — United States, 2016 (CDC). Click.

Zika: Why the virus isn’t an STI despite being passed on after sexual contact (Independent).  Only where sex is the predominant route of transmission, and the infection is maintained in the human population by sexual transmission, is a pathogen considered a STI and that definition does not apply to Zika virus. Click.

Brazil finds Zika in saliva, urine; expert warns against kissing (SMH). Detection of Zika virus in saliva and urine doesn’t necessarily mean these are pathways of transmission. Authorities advising against kissing? Click.

Zika and the 2016 Rio Olympics

Zika Outbreak Means It Is Now Time To Cancel Rio Olympics (Forbes). Is the threat of Zika virus really so great that the Rio Olympics should be cancelled? Click.

NYU Bioethicist, Amid Zika Threat, Wants to Reschedule Rio Olympics: ‘What the Hell’s the Difference?’ (New York Magazine). With so many unanswered questions, and little confidence the outbreak is under control, is it really ethical to go ahead with the Rio Olympics? Click.

Brazil minister says no plans to cancel Rio Games (AP). Click.

Zika virus will not hamper Rio Olympics says IOC president Thomas Bach (ABC News). Click.

IOC says it will issue advisory on Zika virus spreading across South America ahead of Rio Olympics (ABC News). Click.

Zika crisis and economic woes bring gloom to Brazil’s Olympic buildup (The Guardian). Click.

Zika scare: Olympic athletes need mosquito nets as Bushman sponsors team (SMH). Click.

Zika Virus Rio Olympics: How Australian Athletes Will Fight Potential Infection (Huffington Post). Click.

Bushman named as official insect repellent of Australian Olympic team (mUmBRELLA). One of Australia’s leading mosquito repellent manufacturers to support the athletes and officials travelling to Rio Olympics. Click.

MosquitoControl_Brazil_Getty_AFP_ERNESTO_BENAVIDES

Battling mosquitoes and the Zika virus outbreak

How Can We Slow The Epidemic Of Zika Infections? (Forbes). Now that the outbreak of Zika virus has been documented, what strategies are available to slow the spread and increasing numbers of cases? Click.

The world needs a Zika vaccine: Getting one will take years (STAT). We won’t have a Zika virus vaccine anytime soon. Here is an explanation why. Click.

Brazil Zika virus: ‘War’ declared on deadly mosquitoes (BBC). How are authorities battling the outbreak of Zika virus in Brazil? Click.

Mosquito Wars Update: Would You Choose GMO ‘Mutants,’ Pesticides Or Dengue And Zika Viruses? (Forbes). The outbreak of Zika virus has focused the attention of health authorities on options for future mosquito-borne disease management strategies. Click.

Brazil sends in 200,000 soldiers to stop the spread of the Zika virus outbreak which has seen huge numbers of babies born with small heads and cast a shadow over the Olympics (Daily Mail). Click.

Here’s what it will take to stop the Zika virus (Vox). Summary of critical issues to address to better understand and stop the Zika virus outbreak. Click.

Curbing Zika Virus: Mosquito Control (Popular Science). Well supported article on options for mosquito control and mosquito-borne disease management. Click.

7 ways the war on Zika mosquitoes could be won (New Scientist). Overview of the different approaches available to beat the Zika virus outbreak and mosquito-borne disease more generally. Click.

In Australia, a New Tactic in Battle Against Zika Virus: Mosquito Breeding (New York Times). Overview of emerging technologies developed in Australia to battle dengue but could be incorporated into the Zika virus response. Click.

Zika virus: pesticides are not a long-term solution says leading entomologist (The Guardian). Spraying insecticides can sometimes be a blunt instrument unless there is an understanding of where best to target mosquito populations. Click.

Zika outbreak revives calls for spraying with banned pesticide DDT (STAT). Outbreaks of mosquito-borne disease often prompt calls to return to DDT as teh insecticide of choice to control mosquitoes. Click.

Insecticide to be sprayed inside planes from Zika affected regions (The Guardian). Aircraft should already be treated with insecticides to stop movement of mosquitoes from one country to the next, hitchhiking in planes but efforts have been boosted in wake of Zika virus fears. Click.

Bats and Mosquitoes

Illustration by Golly Bard

Be careful what you wish for

Let’s Kill All the Mosquitoes (Slate). Emergence of another mosquito-borne disease, another opportunity to call for killing mosquitoes off completely. Click.

Why Eradicating Earth’s Mosquitoes To Fight Disease Is Probably a Bad Idea (Vice). Don’t be so sure that eradicating mosquitoes is the answer, or at least it won’t have consequences. Click.

Would it be wrong to eradicate mosquitoes? (BBC). What could be the unexpected consequences of sending mosquitoes extinct? Click.

Sights on world’s deadliest animal as Zika virus spreads (The New Daily). Wiping out all mosquitoes is probably a bad idea but perhaps we could knock off just a few and greatly improve the health of the planet? Click.

There’s one (or more) in every crowd…

Is Zika Virus the Next Tool For Forced Sterilization, Vaccination and Depopulation? (Activist Post). Oh boy. Click.

Health experts slam anti-vaxxers’ zika virus conspiracy theory as ‘absurd’ (News.com.au). No, immunization programs didn’t cause the Zika virus outbreak and increases in microcephaly. Click.

Concerning Correlation: GMO Mosquitoes Caused Zika Virus Outbreak? (21st Centuray Wire). Bonkers. Click.

No, GM Mosquitoes Didn’t Start The Zika Outbreak (Discover Magazine). Wonderful article debunking one of the most common conspiracy theories associated with the Zika virus outbreak. Click.

Got any more useful links? Tweet them through to me!

Photo of sign from Zika Forest taken from here.