Ross River virus in Sydney, should we be worried?

IMG_8615

Health authorities in NSW recently released warnings to avoid mosquito bites following the detection of Ross River virus in wetlands along two major river systems in metropolitan Sydney. Whats going on and should these findings be something to be worried about?

What is Ross River virus?

Ross River virus is the most commonly reported mosquito-borne disease in Australia. The virus is spread by the bite of a mosquito and about 40 different mosquito species have been implicated in its transmission.

The disease caused by Ross River virus is not fatal but it can be severely debilitating.

Thousands of Australian’s are infected each year. We have some idea of the quantity of infections as Ross River virus disease is classified as a notifiable disease. While the official statistics indicate there are around 5,000 cases of illness across the country (there are between 500 and 1,500 cases per year in NSW), there are likely to be many more people that experience a much milder illness and so never get blood tests to confirm infection. These people won’t appear in official statistics.

What makes Ross River virus a fascinating pathogen to study is also what makes it extremely difficult to predict outbreaks. Transmission cycles require more than just mosquitoes. Mosquitoes don’t emerge from local wetlands infected with the virus, they need to bite an animal first and become infected themselves before then being able to pass on the pathogen to people.

It is generally thought that kangaroos and wallabies are the most important animals driving outbreak risk. However, we’re starting to better understand how the diversity of local wildlife may enhance, or reduce, likely transmission risk.

How was the virus found in Sydney?

The recent warnings have been triggered by the results of mosquito trapping and testing around Sydney. NSW Health coordinates an arbovirus and mosquito monitoring program across the state and this includes surveillance locations within metropolitan Sydney.

Mosquitoes are collected using traps baited with carbon dioxide. They trick the mosquitoes into thinking the trap is an animal. By catching mosquitoes, we can better understand how the pest and public health risks vary across the city and the conditions that make mosquitoes increase (or decrease) in numbers.

It mostly occurs around the metropolitan region’s northern and southern river systems and generally associated with estuarine or brackish-water wetlands. In these areas, there are often abundant mosquitoes and wildlife. Along the Parramatta River, there are often abundant mosquito populations but given the heavily urbanised landscape, there aren’t many kangaroos and wallabies.

The nuisance impacts of mosquitoes, such as Aedes vigilax, dispersing from the estuarine wetlands of the Parramatta River can create challenges for local authorities. These challenges include targeted wetland conservation and rehabilitation strategies along with ecologically sustainable mosquito control programs.

Is the detection of the virus in Sydney unusual?

The detection of Ross River virus is not that unusual. Detection of Ross River virus (as well as other mosquito-borne viruses such as Stratford virus) along the Georges River in southern Sydney is an almost annual occurrence. The local health authorities routinely issue warnings and in recent years have successfully used social media to spread their messages.

Ross River virus has also previously been detected along the Parramatta River.

While there have been confirmed local clusters of locally acquired Ross River virus in the suburbs along the Georges River, there have been no confirmed cases of Ross River virus disease in the suburbs along the Parramatta River.

There are a few reasons why more disease isn’t reported. Health authorities are active in promoting personal protection measures, sharing recommendations on insect repellent use and providing regular reminders of the health risks associated with local mosquitoes. It isn’t unreasonable to think these actions raise awareness and encourage behaviour change that reduces mosquito bites and subsequent disease.

Along the Georges River, there is clearly a higher risk of infection given the more significant wildlife populations, especially the wallabies common throughout Georges River National Park. By comparison, along the Parramatta River there are fewer bushland areas and virtually no wallabies (except for the occasional one hopping across the Sydney Harbour Bridge). Even in the wetland areas around Sydney Olympic Park, there is abundant bird life, meaning mosquitoes are probably more likely to be biting the animals than people. A study looking at the blood feeding preferences of mosquitoes in the local area found that animals were more likely to be bitten, mosquitoes actually only fed on humans about 10% of the time.

It is important that if you’re spending a lot of time outdoors in these areas, especially close to wetlands and bush land areas at dawn and dusk when mosquitoes are most active, take measure to reduce the risk of being bitten. Cover up with long sleeved shirts and long pants and apply an insect repellent. Choose a repellent that contains either DEET (diethlytoluamide), picaridin, or oil of lemon eucalyptus. Apply it to all exposed skin to ensure there is a thin even coat – a dab “here and there” doesn’t provide adequate protection. More tips here.

Also, keep in mind that just because cooler weather has arrived, the health risks associated with mosquitoes remain. That means keeping in mind that mosquitoes will be out and about just as football and netball seasons start so take along some mosquito repellent to training nights.

++

Join the conversation on Twitter!

++

 

 

 

 

 

 

 

Are mosquitoes disappearing?

IMG_8634

There’s been a swarm of headlines recently about the global decline of insects. Could mosquitoes be disappearing too? Probably not but how would we know?

Recent research suggests that over 40% of insects worldwide are in decline. Some of the most vulnerable insects are those that occupy specific ecological niches. When scientists reviewed over 70 historical reports of insect declines, environmental degradation, the spread of agriculture, and widespread insecticide use were suspected for causing the decline.

What about mosquitoes? Sadly, they’re not a group of insects many people would care too much about if they were threatened with extinction.

Some of the most important mosquitoes, those that transmit dengue viruses or malaria parasites, are evading our efforts to eradicate them. For these insects, the insects authorities the world over actively are trying to kill, they’re surviving quite well. They’re becoming resistant to commonly used insecticides and they’re thriving living in habitats in and around our cities.

The reality is that some mosquitoes are probably doing very well , while those potentially under threat are probably those we know least about.

Tracking change in mosquito populations

There are over 300 mosquitoes in Australia. The mosquitoes that bring with them the greatest pest and public health risks are well studied. Mosquitoes such as Aedes camptorhynchus, Aedes vigilax, and Culex annulirostris are nuisance-biting pests and have been associated with outbreaks of Ross River virus disease. Their populations are monitored as part of mosquito control and surveillance programs around the country. But these programs probably won’t reliably pick up declines in lesser known mosquitoes.

There are mosquito surveillance programs around the country that provide information on local mosquito populations to health authorities. That’s how scientists know if this really is the “worst year for mosquitoes ever”! There is little evidence that the major pest mosquitoes are in decline. But these programs probably won’t reliably pick up declines in lesser known mosquitoes.

Mosquitoes under threat?

It is entirely possible that there are mosquitoes under threat.

What about the mosquitoes that specifically feed on frogs, how will they be impacted by declining frog populations?

Mosquitoes that are highly specialised to certain environments or ecological niches or close interactions with wildlife may struggle if their ecosystems are disrupted. Habitat degradation may hit some mosquitoes in much the same way it’ll hit other insects. It won’t end well.

What about mosquitoes associated with snow-melt pools in the Australian alps? Could climate change see their habitats destroyed?

Mosquitoes can adapt

Mosquitoes can be some of the most adaptable animals on the plant. That’s probably why they’ve been such persistent pests. In fact many insects are quite adaptable to change and that’s why we may not be facing an “insect apocalypse” as many headlines suggest.

We’ve found that mosquitoes are more abundant in mangrove forests that are degraded or surrounded by industry. Some mosquitoes are even becoming resistant to commonly used insecticides. Those same issues threatening many thousands of insects are no problem for some mosquitoes.

The reality is, mosquitoes have already been around for millions of years, they’ll probably be around long after. Its just that we could take a few species with us…

++

The image at the top of this article is of a carbon-dioxide baited mosquito trap, there were thousands of mosquitoes inside; collected late in 2018 along the Georges River in southern Sydney.

Join the conversation on Twitter, are there any mosquitoes you think are under threat?

 

Giant mosquitoes are invading my backyard!

Toxorhynchites_TessSpillekom_Newcastle

“I’ve never seen anything like it. I actually heard it before I saw it!”

I get more than a dozen emails, tweets, or phone calls every summer like this. Excited (terrified?) correspondence asking about the “giant” mosquito captured in the backyard or buzzing about windows.

Toxorhynchites speciosus is as “good” a mosquito as there can be. First, it is a gorgeous creature. Almost four times the size of a typical mosquito, it is a large dark and shiny mosquito with bright metallic patterns.

There are around 70 species of Toxorhynchites mosquitoes around the world but only a few species found in Australia. The mosquito is reasonably common, but rarely very abundant. It is found along the eastern and north coast of Australia, stretching from Sydney through to Darwin.

Toxo_larvae

The larvae of Toxorhynchites speciosus are large and easily spotted in water-holding containers around the backyard

This is one of the few mosquitoes that don’t need blood. Unlike almost all other mosquitoes, the females of which need blood to develop their eggs, Toxorhynchites speciosus doesn’t bite. It gets its energy from plant juices and nectar.

Even though it doesn’t bite, the sheer size of this mosquito makes it an imposing sight.

They most commonly lay eggs in water holding containers around the home. Pot plant saucers, bird baths, watering cans, buckets, bins and even tree holes and water-filled bromeliads. These are the same types of water-filled containers where you’ll find wrigglers of the pest mosquitoes Aedes notoscriptus and Culex quinquefasciatus.

They have a fascinating way of laying eggs. Unlike many other mosquitoes that elegantly stand on the water surface and lay up to 300 eggs in a neatly packed floating raft, Toxorhynchites lays single eggs. It  doesn’t even land on the water to lay eggs, it fires them into water while in mid flight!

Once an appropriate place to deposit an egg has been identified, the mosquito flies in a vertical loop, the loops getting ever smaller until the egg is ejected and into nearby habitats. A neat trick and avoids the risk of being eaten by a hungry spider or other predator waiting by to grab a mosquito coming in to lay eggs.

Toxorhynchites_HelenMamas_Newtown

A specimen of Toxorhynchites speciosus collected by Helen Mamas from the inner west suburb of Sydney, Newtown

Not only do these mosquitoes not bite, they even help out with a little pest mosquito control around the home.

While the mosquito wrigglers of mosquito mosquitoes feed on organic debris floating about in water bodies, the larvae of Toxorhynchites speciosus are predatory and feed on the wrigglers of other mosquitoes. Laboratory studies have shown that a closely related Toxorhnychites consumed over 300 Aedes aegypti  (aka the dengue mosquito) larvae during its development. In some parts of the world, a closely related mosquito is used as a biological control agent of the pests that spread dengue, chikungunya and Zika viruses.

While Toxorhynchites speciosus will chomp through plenty of wrigglers of Aedes notoscriptus each summer in Australian backyards, it is unlikely to make a huge difference in bites.

My experience in backyards across Sydney has shown that there is something of a tug-o-war between Toxorhynchites speciosus and other mosquitoes. While undertaking a project with Ku-ring-gai Council looking at backyard mosquitoes and their possible impact on backyard wildlife conservation efforts, I’d often find a fluctuating dynamic between the mosquito predators and their prey. Populations of Aedes notoscriptus or Culex quinquefasciatus would build up in bird baths and buckets, then Toxorhynchites speciosus would move in. They’re eat through all the other larvae, then once emerged and flown off, the other mosquitoes would move back in. And the cycle continued.

Toxorhynchites_DavidLawson_Marrickville

Image of Toxorhynchites speciosus sent to be by David Lawson from the inner west suburbs of Marrickville, Sydney.

Next time you see a “giant mozzie” buzz by, think twice before you squish it. Oh, and keep in mind that this mosquito is also a movie star! Do you recognise it from Jurassic Park?

If you want to keep the pest mosquitoes out of your backyard, make sure you get rid of any water-holding containers. If you can’t throw them out, keep them covered.

Check to make sure your roof gutters and drains are clear of leaves and other debris so they flow freely. Check your rainwater tank is screened to stop the mozzies entering. And try not to kill the good guys who help keep the other mozzies at bay!

For more on how to better control insect pests in and around the home, read one of our latest publications on engaging urban stakeholders in the sustainable management of arthropod pests.

Find out more about Australia’s fascinating mosquitoes by checking out our “A Guide to Mosquitoes of Australia” via CSIRO Publishing!

 

Wetlands, climate change, and managing mosquitoes

img_9966

I’ve spent over twenty years sloshing about in wetlands around Sydney and surrounds. They’re changing. They’re changing due to shifts in climate, sea level rise, and urbanisation. The 2019 World Wetlands Day is a time to stop and reflect on the state of wetlands around the world and how we can keep them health under the threat of climate change.

World Wetlands Day is held every year on 2 February,  this day marking the adoption of the Convention on Wetlands on 2 February 1971 in Ramsar, Iran. The theme of the 2019 World Wetlands Day is “Wetlands and Climate Change” and we shouldn’t just think about the impact of climate change on wetlands but also how wetlands can help us as we face the challenges of a changing climate.

Coastal wetlands around Sydney are impacted in many ways. Mangrove forests and saltmarshes are degraded through direct and indirect human activity. There is recent research indicating that sea level rise is impacting mangroves along the Parramatta River in Sydney. This requires active management to ensure substantial degradation and die back occurs, as has been seen elsewhere in Australia.

Some of our research even suggests that degraded mangroves are more productive when it comes to mosquitoes. Effective rehabilitation of these habitats may actually reduce the mosquitoes flying out of these environments and impacting the community nearby. Similarly, urban planning should consider the risk posed by mosquitoes in wetlands adjacent to new and expanding residential developments. This includes major wetland rehabilitation projects.

img_9222

The challenges facing wetlands isn’t unique to Australia. Released in conjunction with World Wetlands Day preparations was The Global Wetland Outlook. A document that provides “a current overview of global wetlands: their extent, trends, drivers of change and the responses needed to reverse the historical decline in wetland area and quality”.

While we think of rainforests and coral reefs under greatest threat, it is a sobering thought to think that up to 87% of the global wetland resource has been lost since 1700. These are environments that were, until relatively recently, considered wastelands. With this lack of perceived value came greater susceptibility to abuse and degradation.

Along with the unsurprising loss of wetland area and decline in biodiversity associated with these environments come some interesting findings. The most interesting from a mosquito management point of view is that artificial wetlands are actually increasing in some areas. Notwithstanding an assessment of the ecosystem services they provide, they’re more likely to be closer to human habitation, so any mosquitoes associated with them may have relatively greater impact.

In recent years, the value of wetlands has increased. There is an understanding now that these environments provide critical ecosystem services. There is also a growing understanding of the wetland’s roles in mitigating the impacts of climate change. Coastal wetlands in particularly provide protection from increasingly severe storm events and trap valuable carbon stores that assist in mitigating the impacts of climate change.

img_9422

This then raises the issues of mosquitoes. Mosquitoes are a natural part of wetland ecosystems. While often their pest impacts may indicate the poor health of the wetlands, at other time, abundant mosquito populations are a natural occurrence that fluctuate in their intensity from year to year. How do best manage mosquitoes associated with these wetlands?

I’ve written about how I think mosquito control should actually be considered an important component of coastal wetland rehabilitation. How climate change may be impacting mosquito threats and that even hot and dry summers under the influence of El Nino may not necessarily mean that mosquitoes are less problematic.

Based on the experience during the 2018-2019 summer, mosquitoes seem to persist in plague proportions despite the extreme temperatures being experienced in NSW.

It is important to remember that there are many mosquito species associated with wetlands, especially freshwater habitats, that pose no substantial threat to humans. There are hundreds of mosquitoes in Australia, less than a dozen really pose a substantial pest or public health threat. Many mosquitoes may play an important ecological role in wetland ecosystems. This may include representing a locally important food source for insectivorous wildlife or possibly pollinating plants.

IMG_9794

A balance is required. If we’re going to continue squeezing an increasing human population into a narrow stretch of land up against the coast, there are many issues to consider here and they’re not just about how human activity is impacting those coastal wetlands. Pollution is a problem, our physical damage is another. Worst still, we’re taking away the opportunity of these normally resilient habitats to adapt to a rising sea levels and increasingly frequent storm events. Our cities and their infrastructure provide a hard and unforgiving edge against the wetlands.

Our wetlands even battle against themselves sometime. The threat of mangrove incursion into saltmarsh habitats is of increasing concern. Its counter-intuitive but perhaps we need to be pulling out mangroves to save some coastal wetlands.

Expanding, modifying, and creating new coastal wetlands will require local authorities to turn their mind to the issue of mosquitoes. Firstly, consideration needs to be given to what may constitute a tolerable level of mosquito exposure. How many mosquito bites are too many? How many cases of mosquito-borne disease are considered “normal” each year. Once these thresholds are drawn and exceeded, who is responsible for the decisions on active mosquito control? Who pays?

Another ecosystem disservice to consider is how the nuisance-biting of mosquitoes may discourage engagement with local wetlands. less engagement may mean less support for conservation and rehabilitation efforts. Less community interest, support, and activism may then result is less political drive to protect local wetlands by local authorities.

Importantly, decisions regarding the management of coastal wetlands, as well as those peppered throughout the city, need to be made with some consideration of mosquitoes and their potential impact. How do you convince the local community about the overall benefits of carbon sequestration, wildlife conservation, and protection of infrastructure is worthwhile if their quality of life is degraded through summer swarms and nuisance-biting mosquitoes?

More details on managing the risks associated with estuarine mosquitoes is provided in this book chapter included in the free Sydney Olympic Park Authority’s guide to managing urban wetlands.

For more about World Wetlands Day activities in Australia see here.

To stay up to date with my adventures in local wetlands, you can follow me on Instagram here.

 

 

 

Preparing for the exotic mosquito invasion of Australian backyards

Backyardbuckets_Tweed_Feb2018

While Australia has hundreds of “home-grown” mosquitoes, it is just a few from overseas that have authorities on alert. Preparing for these new risks is critical if the future pest and public health risks associated with mosquitoes are to be effectively managed. Citizen scientists may hold the key to success!

A project underway in the Northern Rivers region of NSW is set to build a framework for responding to the threats of exotic mosquitoes. This is in association with the Building Resilience to Climate Change program, a partnership program between Local Government NSW (LGNSW) and the NSW Office of Environment and Heritage (OEH) to address identified climate change risks and vulnerabilities facing NSW councils.

Lead by Tweed Shire Council, the program “Developing and trialing a Northern Rivers Emerging Vector Response Plan” is designed to build capacity among local stakeholders in the region to better respond to possible introductions of exotic mosquitoes from overseas (or perhaps travelling south from Queensland).

The mosquitoes that pose the greatest risk are Aedes aegypti and Aedes albopictus. As well as being severe nuisance-biting pests, these mosquitoes can transmit pathogens of serious public health concern such as Zika, dengue and chikungunya viruses. The mosquitoes aren’t found in local wetlands, they prefer backyard water-holding containers. This means that should these mosquitoes make their way to NSW, local authorities must shift their focus from the swamps to the suburbs.

There is already a program in place monitoring mosquitoes and the pathogens they carry in NSW. This program is primarily focused on Ross River virus and the mosquitoes that transmit this pathogen. As a consequence, mosquito collections are typically in bushland or wetland areas adjacent to urban areas and may not readily pick up exotic mosquitoes that have moved into local backyards.

Authorities must expand their approach and develop strategic responses to these exotic threats.

THW_3

Representatives of local stakeholders help survey 300 backyards in Tweed Heads!

This work is already underway. A workshop for local stakeholders was held in December 2017 in Tweed Heads along with a two day field exercise in which around 300 residential backyards were surveyed for potential mosquito habitats. A wide range of potential sources of mosquitoes was identified, the most common were water-filled plants (particularly bromeliads), pot-plant saucers, buckets, wheel burrows, garden ornaments, and rainwater tanks.

The survey highlighted how important community involvement in the program is and “citizen science” is currently being employed to assess some mosquito surveillance technologies in backyards across the Tweed Heads region.

Supported by a grant from the Human Health and Social Impacts Node, a partnership between the Office of Environment and Heritage, NSW Health and The University of Sydney, over 150 mosquito traps were deployed and it is hoped that the mosquitoes they collect will help inform the development of strategic mosquito surveillance in the future.

Backyardovitrap_Tweed_Feb2018

An example of the mosquito traps deployed across two suburbs in Tweed Heads to collect eggs from mosquitoes buzzing about backyards

Whats needed now is a better understanding of how the community thinks about mosquitoes and how they’re trying to make their backyard less favourable for these pests.

Residents in the Local Government Areas of Tweed, Byron, Ballina, Richmond Valley, Clarence Valley, Lismore and Kyogle are invited to participate in a short survey. It is a great way to learn how to reduce the risks of mosquito bites in your backyard (there is also an iPad that can be won!).

If you live in the areas mentioned, or know friends or family who do, please complete and/or share the details of the survey.

You can start the survey now!

There are many factors contributing to the future threat of  mosquitoes and mosquito-borne disease in Australia. Climate change or exotic mosquito introductions may be game changes but one of the most important considerations is the importance of community awareness and willingness to assist local health authorities.

Perhaps the new mosquito emoji will help too?

 

 

 

 

 

Can citizen science help stop mosquito-borne disease outbreaks?

Aedesaegypti_Westmead_Webb

Mosquito surveillance has been a critical component of how health authorities manage the risk of mosquito-borne disease. Data on the abundance and diversity of mosquitoes, together with activity of mosquito-borne pathogens, can guide decisions on when and how to apply mosquito control agents or issue public health warnings.

Almost every state and territory in Australia conducts seasonal mosquito surveillance. The exceptions are Tasmania and ACT, although both have had some limited investigations over the years. Even among those doing routine surveillance, the program structure varies but most include the collection of mosquitoes. This is how we can determine if it really is “the worst mosquito season ever”!

The programs are currently are working well in providing early warnings of outbreaks of mosquito-borne disease. These programs often include mosquito trapping undertaken by local governments and, occasionally, members of the public. For may years there has been a strong interest in citizen scientists undertaking mosquito sampling, particularly by some schools. The projects that I’ve been involved with have rarely got off the ground for various reasons. School holidays at the peak of mosquito season doesn’t help. Beyond that, the consumable costs of the traps we use, especially the dry-ice (carbon dioxide) used to bait the traps, can be a barrier to involvement. Dry-ice use in schools, and the associated health and safety issues, has been a cause for concern too. Finally, the fact that mosquitoes may be attracted to traps operated in school or community grounds and that these mosquitoes may be carrying disease-causing pathogens can often raise concerns.

As a result, there really haven’t been any major citizen science based mosquito surveillance programs until recently. Things are changing.

One reason local authorities are starting to turn their minds to a citizen science based approach is that the threat of exotic mosquitoes will require a shift in focus from the swamps to the suburbs. The mosquitoes that drive outbreaks of dengue, particularly Aedes aegypti and Aedes albopictus live in water-holding containers in backyards and populations are not as easily measured by traditional surveillance approaches. This is why there has been a much stronger engagement with the public in Far North QLD (a region where Aedes aegypti is present and causes occasional outbreaks of dengue) where health authorities are regularly visiting backyards looking for and controlling backyard mosquitoes

There are many reasons why citizen science is starting to come into play when it comes to mosquito surveillance more broadly. Technology is getting better (as highlighted by many smartphone apps) but also, some of the laboratory techniques are getting cheaper. This is a really critical issue.

A breakthrough in rapid testing of mosquitoes led to the development of an award winning initiative in Brisbane by Metro South Health and Queensland Health Forensic & Scientific Services. The Zika Mozzie Seeker project combines this new laboratory technique with DIY mosquito traps by the general public to help track exotic mosquitoes. In short, residents create their own mosquito trap out of a bucket or recycled plastic container, it is filled with water and placed in a yard with a small piece of paper hung inside. Mosquitoes then drop by to lay eggs on the paper. After a couple of weeks, the traps are collected and egg filled paper strips sent to the lab and tested to track the DNA of local and exotic mosquitoes. The project has been an amazing success with around 2,000 participants being involved in recent years (that adds up to about 150,000 mosquito eggs collected and tested). Luckily, no exotic mosquitoes have been detected.

But when it comes to citizen science based projects, perhaps it isn’t the mosquitoes collected (the backyard mosquito battles are fun to track though) but the awareness raised that is important. Awareness not only of the risks posed by mosquitoes, but what you can do about them through the safe and effective use of mosquito repellents and other personal protection measures. Engaging the public through citizen science may be the way to go. It doesn’t always work in reaching new audiences, as was discovered in a mosquito surveillance project in South Australia, but that doesn’t mean it won’t!

Perhaps the rise in new smartphone apps will help. There are a few out there, like the Globe Observer and Mosquito Alert. These, and other smartphone apps, deserve their own post (stay tuned). However, the significant initiative of recent years has been the Global Mosquito Alert project. Launched in May 2017, here is an extract from their media release:

The new initiative, launched under the name ‘Global Mosquito Alert’, brings together thousands of scientists and volunteers from around the world to track and control mosquito borne viruses, including Zika, yellow fever, chikungunya, dengue, malaria and the West Nile virus. It is the first global platform dedicated to citizen science techniques to tackle the monitoring of mosquito populations. The programme is expected to move forward as a collaboration involving the European, Australian and American Citizen Science Associations as well as the developing citizen science community in Southeast Asia.

With such momentum, it is an exciting time to consider the potential of citizen science in Australian mosquito surveillance programs. This is what i will be exploring in my presentation at the Australian Citizen Science Conference in Adelaide this week.

I’ll be presenting the paper on Wednesday 7 February 2018 in the “Empower with Data” session. The full abstract of our presentation is below:

The public as a partner in enhancing mosquito surveillance networks to protect public health

Craig Williams (1), Brian L. Montgomery (2), Phil Rocha (2), and Cameron Webb (3)

(1) University of South Australia, School of Pharmacy and Medical Sciences; (2) Metro South Public Health Unit, Queensland Health; (3) Medical Entomology, Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney

Mosquito-borne diseases are pervasive public health concerns on a global scale. Strategic management of risk requires well-designed surveillance programs, typically coordinated by local health authorities, for both endemic and exotic mosquitoes as well as the pathogens that they may transmit. There is great potential to utilise citizen science to expand the reach of current surveillance programs, particularly those centred on urban areas. There is increasing focus internationally on the role of citizen science in mosquito surveillance as evidenced by the establishment of the ‘Global Mosquito Alert’ project driven by multiple international stakeholders and citizen science associations. In Australia, new initiatives to engage the public in mosquito surveillance are emerging in multiple centres; utilizing a range of emerging field and laboratory technologies that remove previously existing barriers to community involvement. In South Australia, citizen science entomology programs have been trialed, and mosquito trapping and identification technology to expand existing trapping networks has been assessed. In suburban South-East Queensland, Zika Mozzie Seeker is linking citizen scientists into a network by using new laboratory techniques to rapidly screen for Ae. aegypti DNA in large numbers of eggs collected from DIY ovitraps,. In NSW, citizen science is being used to promote biodiversity and delineate pest and non-pest activity of mosquitoes associated with urban wetlands and surrounding suburbs. Citizen science holds great potential for public engagement activities as well as serving to enhance existing surveillance operations.

 

Join the conversation on Twitter by following Dr Cameron Webb, A/Prof Craig Williams and keep an eye on the meeting via the hashtag

A flood of festive season media coverage

Webb_TodayShow_December2017

Spring is gone and with the arrival of summer comes the mosquitoes. Calls from the media inevitably follow shortly after. I have no doubt many journalists, broadcasters and producers have my name in their diaries, circled brightly in red, on the first day of summer!

It is a fun part of my job to deal with the media. Its more than just getting a chance to talk about mosquitoes and their role in the local environment, it also provides an opportunity to do some important public health communications around the issues of mosquito bite prevention and management of mosquito-borne disease.

Scorchers, sun protection, and buzzing bloodsuckers

What got the ball rolling this year was a joint media briefing arranged by ausSMC. Alongside colleagues talking about heat waves, summer storms, sun protection and bushfire, I shared some tips on protecting yourself from mosquito bites and mosquito-borne disease this summer. It was interesting speaking alongside Professor Sanchia Aranda, CEO of Cancer Council Australia, and comparing the ways we promote safe and effective use of sunscreens and mosquito repellents. This was picked up on in additional media coverage. Overall, there was over 300 local and international articles following this media briefing!

The briefing provided an opportunity to fill a gap in public health communication I’ve identified (and tried to fill) in recent years. Health authorities are pretty good at providing advice on choosing mosquito repellents but less so on using them effectively. Ensuring repellents are actually used effectively is the best way to increase the protection of the community against mosquito-borne disease.

In early December we held our “Sydney Ideas: Mosquitoes in the City” event at Westmead. This was a great opportunity to speak to the community and the well attended event prompted some broader interest in the work of presenters.

It was a pleasure being able to visit the studios of ABC Radio National with Prof Tony Capon, Professor of Planetary Health at the University of Sydney, to discuss with Philip Adams how urbanisation and a changing climate may influence local mosquito populations and mosquito-borne disease risk. I’m working more and more with Tony so nice to share the opportunity to talk about this initiative with him on national radio. You can listen back here. This work is strongly linked to the theme of the “Mosquitoes in the City” event and there is clearly much to learn regarding the place of mosquitoes, wetlands, wildlife and mosquito-borne disease at the fringes of our metropolitan regions under the influence of a changing climate and the ways urban design responds to the threat.

Webb_NewsBreakfast_December2017

 

Why me? I wish mozzies would bite my friends instead!

There was another boost in interest resulting from a spot on ABC News 24 Weekend Breakfast. The accompanying online article explaining why mosquitoes are more likely to bite some people more than others then sparked considerable interest! What followed was a bunch of radio and television interviews.

There was also a follow up article at News.com.au and this was also picked up on “Kids News” who republished a modified version of the story together with some suggestions for classroom learning exercises. Nice.

There were two different experiences with ABC News. The appearance on Weekend Breakfast was great. I’ve done segments with Andrew Geoghegan and Miriam Corowa before, have always been impressed with their knowledge and interest. I really enjoy the relaxed feel on the show. Was also a pleasure working with Dale Drinkwater, the producer, who put together the segment and accompanying article.

A couple of days later I appeared on News Breakfast with Virginia Trioli. As the program is produced out of Melbourne, I had to do a live cross from the Sydney studios. I always find these interviews a little uncomfortable as I’m tucked away in a small, dark recording booth staring down a camera and hoping my ear piece doesn’t fall out! I’m sure there is an art to these but I’m not sure I’ve mastered that just yet.

 

Once the mozzies start biting…

With the warm weather arriving and everyone’s minds turning to summer, there is always a flood of festive season-related media stories. Once the mozzie stories started popping up, many more media outlets starting running segments.

There were also warnings about the health threats of mosquitoes over the festive season from local health authorities.

I had the chance to visit many radio and television studios to conduct interviews, this time it was the first opportunity to visit the Macquarie Radio (home to 2UE and 2GB) for what turned out to be a relatively long (by commercial radio standards) interview with Tim Webster on Talking Lifestyle/2UE including a few callers asking about mosquito repellents, disease risk and what the “purpose” of mosquitoes actually is! Listen back via the Holiday and Home podcast.

Taking talkback can be tricky. I’m fortunate enough to have had an opportunity to do this reasonably routinely. I appreciate the opportunity to get a feel for what the community wants to know about mosquitoes, we should be taking these things into account when designing fact sheets and other communication material. There is no point in simply systematically repeating what has come before.

Live TV can also be tricky. I also had the chance to do segments on Channel Nine’s Today and Today Extra programs. These are always fun and I do find it fascinating to see how the behind-the-scenes production of these shows get put together.

Even the local newspaper, the Parramatta Sun, ran a nice story with great shot of me among the mangroves of the Parramatta River. It is also fun dragging photographers out into the wetlands. This time a fun shot of me from a different perspective other than simply standing beside a mosquito trap!

CameronWebb_ParramattaSun_December2017

There was certainly plenty of “buzz” (or should that be “hum”) about mosquitoes over recent weeks. Great to see other articles pop up by fellow science communicators as well as the occasionally celebrity. There can never be too many ways to get the message out!

The mosquito coil conversation

At the point where I thought everyone was getting sick of mosquitoes, my latest article on the safe and effective use of mosquito coils was published at The Conversation (as well as being republished by ABC News). To date there have been about 90,000 clicks on the article, highlighting just how interested people are in the topic.

There were a bunch of other interview requests on the back of this including ABC Sydney, ABC Brisbane and ABC Adelaide. You can listen back to my chat with James Valentine on ABC Nationwide Afternoons here.

It isn’t always easy managing media requests

To finish up, I think it is important to share some of the reality of wrangling all these media requests. Most importantly, it takes time. It takes time to prepare and it takes much more time to actually do these activities.

For live television appearances, that often only last a few moments, you’re typically asked to arrive at the studios 30-40min prior to scheduled interview. Notwithstanding the travel time back and forth from studios (often very early in the morning), this means the interruption to the day isn’t insignificant. There was one day that I participated in two different teleconferences while in transit to and between interviews at ABC in Ultimo and Channel Nine in Willoughby!

The other thing is that sometimes you’ll get bumped. I was scheduled to chat on a live television program that requested I bring along a cage of live mosquitoes. This is generally not a problem but it does take time, especially when I have to actually collect field caught mosquitoes especially for this purpose. Unfortunately, the segment got bumped on one day, rescheduled for the next and then bumped again for a second time.

It would be easy to get really upset in these circumstances but it is a reality of dealing with the media. Don’t take it personally as these things are mostly out of your control. If you’re keen to engage with the media, this is just one of the many challenges you’ll need to learn to manage.

Spot any other cool mozzie media things? Join the conversation on Twitter or Facebook!

 

A Guam visit to battle Zika virus and discover new mosquitoes

Guam2017_Beach

There are few places on earth where you can search in water-filled canoes for one of the most dangerous mosquitoes on the planet less than a stone’s throw from tourists posing for selfies alongside their inflatable novelty swans in the nearby lagoon.

Guam is the place to go if you need to tick that off your “to do” list!

I was fortunate to be invited to speak at the Pacific Island Health Officers Association (PIHOA) Regional Zika Summit and Vector Control Workshop in Guam 25-29 June 2017. The theme of the summit was “Break Down the Silos for Preparedness and Management of Emergencies and Disasters in United States Affiliated Islands” and had objectives to critical analyze the regional responses to recent mosquito-borne disease outbreaks while developing policies to strengthening public health emergency response and preparedness systems and capabilities within the region.

The tranquil lagoons of the Pacific Islands may seem a very long way from the hustle and bustle of the busy South American cities that held the 2016 Olympics but just as Zika virus was grabbing the attention of sports reporters everywhere, health authorities active in the Pacific were growing concerned too.

Guam2017_StormClouds

The Pacific has been far from free of mosquito-borne disease outbreaks. Previous outbreaks of dengue, chikungunya and even Ross River virus had struck numerous times. While sometimes widespread, at other times outbreaks were more sporadic or isolated. As is the case for many non-endemic countries, outbreaks are prompted by movement of infected travelers and the prevalence of local mosquitoes.

Across the region there are four mosquitoes of primary concern, Aedes aegypti, Aedes albopictus, Aedes polynesiensis and Aedes hensilli. The greatest concerns are associated with Aedes aegypti and in those countries where the mosquito is present, the risks of mosquito-borne disease outbreak are greatest. For this reason alone, it is imperative that good entomological surveillance data is collected to confirm the distribution of these mosquitoes but also to develop strategies to eradicate, where possible, Aedes aegypti should it be introduced to new jurisdictions.

With a growing interest in developing mosquito surveillance and control programs for exotic mosquitoes here in Australia, it was a perfect opportunity for me to get a closer look at how the threats of these mosquitoes and associated outbreaks of disease are managed.

On the third day of the meeting, vector control took centre stage. A brilliant day of talks from each of the jurisdictions on the disease outbreaks they’ve faced and how they’re preparing for future threats. There were presentations from the United States Affiliated Pacific Islands (USAPI) including Guam, the Federated States of Micronesia (Yap, Kosrea, Chuuk, Pohnpei), the Commonwealth of the Northern Marianas (CNMI), the Republic of Palau, the Republic of Marshall Islands (RMI), and American Samoa.

Hearing from these teams doing their best to protect their local communities from the threat of mosquito-borne disease, with only limited resources, was quite eye opening. There was passion and dedication but each territory faced unique challenges to ensure the burden of disease is minimised.

Guam2017_Canoe

Just outside the workshop venue were a series of water-filled canoes. Most contained larvae!

There is little doubt that climate variability will have a strong role to play in the impacts of mosquito-borne disease across the region in the future but there are so many other issues that could be contributing to increased risk too. One of the biggest problems is rubbish.

Time and time again, the issue of accumulated waste, especially car bodies and discarded tyres, was raised as a major problem. As many of the key pest mosquitoes love these objects that trap water, treatment of these increasing stockpiles becomes more of a concern. Community wide cleanups can help reduce the sources of many mosquitoes but the rubbish more often than not remains on the island and requires continued management to ensure is not becoming a home to millions of mosquitoes.

It is a reminder that successful mosquito control relies on much more than just insecticides. An integrated approach is critical.

There was a “hands on” session of surveillance and control. Coordinated by PIHOA’s Eileen Jefferies and Elodie Vajda, the workshop was a great success. It provided an opportunity for many to see how to prepare ovitraps and BGS traps (one of the most widely used mosquito traps) and discuss the various considerations for choosing and using the right insecticides to reduce mosquito-borne disease risk. Workshop attendees were also the luck recipients of a selection of cleaver public awareness material produced in Guam, from personal fans and anatomically incorrect plush mosquitoes to Frisbees and mosquito-themes Pokemon cards!

Guam2017_EntomologyandEnvironmentalHealth

Guam “mozzie” team: Elodie Vajda, Claire Baradi, Michelle Lastimoza, Eileen Jefferies and me

Following the summit, there was a chance to visit the new Guam “Mosquito Laboratory”, newly established as part of the Guam Environmental Public Health Laboratory (GEPHL). I’ll go out of my way to visit any mosquito laboratory but I was particularly keen to see this one as one of my previous students was playing a key role in establishing the mosquito rearing and identification laboratories. Elodie has been doing an amazing job and it was brilliant to geek out with her over some hard core mosquito taxomony as we tried to ID a couple of tricky specimens. [Make sure you check out our recent paper on the potential impact of climate change on malaria outbreaks in Ethiopia]

It actually turned out that one of their “tricky specimens” was a new species record for Guam – an exotic mosquito Wyeomyia mitchellii! The paper reporting this finding has just been published “New Record of Wyeomyia mitchellii (Diptera: Culicidae) on Guam, United States“.

Guam2017_SpeciesList

Mosquito-borne disease in the Pacific isn’t going anywhere and it’s important that once the focus fades from Zika virus, dengue and chikungunya viruses will again take centre stage and their potential impacts are significant. With the added risks that come with gaps in the understanding of local pest and vector species, the prevalence of insecticide resistance among local mosquitoes, climate variability and a struggle to secure adequate funding, challenges lay ahead in ensuring the burden of mosquito-borne disease doesn’t increase.

A modified version of this article appears in the latest issue (Winter 2017; 12(1)) of Mosquito Bites Magazine, (a publication of the Mosquito Control Association of Australia)

 

Why do mosquitoes seem to bite some people more?

Back in 2015, I had an article published at The Conversation on why some people are more likely to be bitten by mosquitoes than others. It is one of the most commonly asked questions I get whenever I give public talks (or friends and family are quizzing me at summer BBQs).

This article was incredibly successful and has currently been read by approximately 1.4 million people. That is a lot of people. Hopefully the science of mosquito bites has got out there and actually helped a few people stop themselves or their family being bitten by mosquitoes!

The warm weather is starting to arrive here in Australia so I am sharing this once more for those wondering why they’re always the “mosquito magnet” among their friends…

Health Check: why mosquitoes seem to bite some people more

Image 20150123 2159 14n8u7p
There are up to 400 chemical compounds on human skin that could play a role in attracting mosquitoes.  sookie/Flickr, CC BY-SA

There’s always one in a crowd, a sort of harbinger of the oncoming mosquito onslaught: a person mosquitoes seem to target more than others. What is it about these unlucky chosen few that makes them mosquito magnets?

There are hundreds of mosquito species and they all have slightly different preferences when it comes to what or who they bite. But only females bite; they need a nutritional hit to develop eggs.

Finding someone to bite

Mosquitoes are stimulated by a number of factors when seeking out a blood meal. Initially, they’re attracted by the carbon dioxide we exhale. Body heat is probably important too, but once the mosquito gets closer, she will respond to the smell of a potential blood source’s skin.

Studies have suggested blood type (particularly type O), pregnancy and beer drinking all make you marginally more attractive to mosquitoes. But most of this research uses only one mosquito species. Switch to another species and the results are likely to be different.

There are up to 400 chemical compounds on human skin that could play a role in attracting (and perhaps repulsing) mosquitoes. This smelly mix, produced by bacteria living on our skin and exuded in sweat, varies from person to person and is likely to explain why there is substantial variation in how many mozzies we attract. Genetics probably plays the biggest role in this, but a little of it may be down to diet or physiology.

One of the best studied substances contained in sweat is lactic acid. Research shows it’s a key mosquito attractant, particularly for human-biting species such as Aedes aegypti. This should act as fair warning against exercising close to wetlands; a hot and sweaty body is probably the “pick of the bunch” for a hungry mosquito!

Probably the most famous study about their biting habits demonstrated that the mosquitoes that spread malaria (Anopheles gambiae) are attracted to Limburger cheese. The bacteria that gives this cheese its distinctive aroma is closely related to germs living between our toes. That explains why these mosquitoes are attracted to smelly feet.

But when another mosquito (such as Aedes aegypti) is exposed to the same cheese, the phenomenon is not repeated. This difference between mosquitoes highlights the difficulty of studying their biting behaviours. Even pathogens such as malaria may make us more attractive to mosquitoes once we’re infected.

Only females bite because they need a nutritional hit to develop eggs.
Sean McCann/Flickr, CC BY-NC-SA

Researchers are trying to unscramble the irresistible smelly cocktails on the skins of “mosquito magnets”. But the bad news is that if you’re one of these people, there isn’t much you can do about it other than wearing insect repellents.

The good news is that you may one day help isolate a substance, or mixes of substances, that will help them find the perfect lure to use in mosquito traps. We could all then possibly say goodbye to topical insect repellents altogether.

Attraction or reaction?

Sometimes, it’s not the bite as much as the reaction that raises concerns. Think of the last time the mosquito magnets in your circle of friends started complaining about being bitten after the event where the purported mosquito feast took place. At least, they appear to have attracted more than the “bite free” people who were also at the picnic, or concert or whatever.

But just because some people didn’t react to mosquito bites, doesn’t mean they weren’t bitten. Just as we do with a range of environmental, chemical or food allergens, we all differ in our reaction to the saliva mosquitoes spit while feeding.

People who don’t react badly to mosquito bites may think they haven’t been bitten when they’ve actually been bitten as much as their itchy friends. In fact, while some people attract more mosquito bites than others, there’s unlikely to be anyone who never, ever, gets bitten.

The problem is that people who don’t react to mosquito bites may all too easily become complacent. If you’re one of them, remember that it only takes one bite to contract a mosquito-borne disease.

Finally, there is no evidence from anywhere in the world that there is something you can eat or drink that will stop you being bitten by mosquitoes. No, not even eating garlic, or swallowing vitamin B supplements.

The ConversationPerhaps if we spent as much time thinking about how to choose and use mosquito repellents as we do about why mosquitoes bite our friends and family less than us, there’d be fewer bites all around.

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article was originally published on The Conversation. Read the original article.

 

Talking wetlands, wildlife and mosquitoes at the 2017 Australian Entomological Society Meeting

homebushbay_mangroves_jan2016

I’ll be in Terrigal, on the NSW Central Coast, for the 2017 Australian Entomological Society conference and taking the opportunity to present a summary of a number of collaborative projects undertaken in recent years, from working out how surrounding landuse influences the mosquito populations in urban mangroves to how important mosquitoes are to the diet of local bats.

Together with a range of colleagues, I’ve been undertaking research into the factors driving mosquito and mosquito-borne disease risk in urban wetlands. It is a complex puzzle to solve with more than just mosquitoes determining local pest and public health risks. However, with outbreaks of mosquito-borne Ross River virus on the rise in recent years, including urban areas of Australia, there is a need to better understand the factors at play.

There is a range of factors that may increase the risk of Ross River virus, they include suitable wetlands, wildlife reservoirs of the pathogen and mosquitoes. Understanding the mosquitoes associated with urban estuarine and freshwater wetlands is critical.

Investigating the role of surrounding landuse in determining the mosquito communities of urban mangroves, we found that industrial and residential areas tended to increase abundance of mosquitoes, perhaps due to direct or indirect impacts on the health of those mangroves. We’ve found previously that mosquitoes problems are often associated with estuarine wetlands suffering poor health, perhaps this is determining the increased mosquito risk we identified? You can read more in our publication here.

Expanding the investigation to look at urban freshwater wetlands, it was found that there was a high degree of variability in local mosquito populations and that each wetland needed to be assessed with consideration to be given to site-specific characteristics. You can read more about our work investigating mosquito assemblages associated with urban water bodies in our publication here.

More research is underway in this field and my PhD student, Jayne Hanford, has already started collecting some fascinating data on wetland biodiversity and local mosquito populations.

While the focus of our studies is often prompted by concern about Ross River virus, interestingly, in recent years we’ve found considerable activity of Stratford virus. This is not currently considered a major human health concern but given how widespread it is, it raises concerns about the suitability of local wildlife, even in Western Sydney, to represent important reservoirs of mosquito-borne pathogens. You can read more about Stratford virus in our publication here.

The final piece of the puzzle is to understand the ecological role of mosquitoes. Where their potential health threats are deemed significant, how could management of mosquito populations have unintended consequences for other wildlife. What about the animals that eat mosquitoes? A number of years ago we did some research to determine the importance of mosquitoes in the diet of coastal bats. While there was no indication that mosquitoes are a critical component of their diet, they are still being snacked on and mosquito control programs need to consider any local ecological impacts.

Now, how am I going to squeeze all this into 15 minutes….

The presentation abstract is below:

What drives mosquito-borne disease risk in urban wetlands?

Webb, C. (1, 2), J. Hanford (3), S. Claflin (4), W. Crocker (5), K. Maute (5), K. French (5), L. Gonsalves (6) & D. Hochuli (3)

(1) Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, NSW 2145; (2) Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, NSW 2006; (3) School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006; (4) Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000; (5) Centre for Sustainable Ecosystem Solutions, Biological Sciences, Faculty of Science, Medicine & Health, University of Wollongong NSW, 2522; (6) School of Arts and Sciences, Australian Catholic University, North Sydney, NSW, 2060.

Managing pest and public health risks associated with constructed and rehabilitated urban wetlands is of increasing concern for local authorities. While strategic conservation of wetlands and wildlife is required to mitigate the impacts of urbanisation and climate change, concomitant increases in mosquitoes and mosquito-borne disease outbreak risk must be addressed. However, with gaps in our understanding of the ecological role of mosquitoes, could control strategies have unintended adverse impacts on vertebrate and invertebrate communities? A series of studies were undertaken in urban wetlands of greater Sydney to investigate the role of land use, wetland type and wetland aquatic biodiversity in driving the abundance and diversity of mosquito populations. A diverse range of mosquitoes, including key pest an vector species, were found in urban environments and mosquito-borne pathogens were detected in local populations, implicating local wildlife (e.g. water birds and macropods) as potential public health risk factors. Estuarine wetlands are locally important with the percentage of residential land and bushland surrounding wetlands having a negative effect on mosquito abundance and species richness while the amount of industrial land had a significant positive effect on species richness. Mosquito control in these habitats is required but insectivorous bats were identified as mosquito predators and the indirect implications of mosquito control should be considered. The aquatic biodiversity of urban freshwater wetlands influenced the species richness of local mosquito populations indicating vegetation plays an important role in determining local pest species. However, the matrix of wetland types also influences the abundance of mosquitoes in the local area. These results demonstrate the need for site-specific investigations of mosquito communities to assist local authorities develop policies for urban development and wetland rehabilitation that balance the need for conservation with reduced public health risks.

To keep up to date on what’s happening at the conference, check out the program online or follow the conversation on Twitter.