Around the world in a thousand fleas


The International Congress for Tropical Medicine and Malaria (ICTMM) kicks off in Brisbane, QLD, Australia this week running from 18 through 22 September. This is a big conference and wonderful for local researchers to be showcased to an audience of international scientists from our own backyard in QLD.

I couldn’t make this meeting unfortunately but luckily my wonderful PhD student Andrea Lawrence will be presenting some of our flea research as part of the Australian Society of Parasitology conference that is incorporated into ICTMM this time around.

Andrea has been doing some excellent research during her candidature and you can read some of it here [Evaluation of the bacterial microbiome of two flea species using different DNA isolation techniques provides insights into flea host ecology] and here [Integrated morphological and molecular identification of cat fleas (Ctenocephalides felis) and dog fleas (Ctenocephalides canis) vectoring Rickettsia felis in central Europe].

This week she will be sharing her research into the genetics of global cat flea populations. You can catch Andrea on Tuesday 20 September in the Zoonoses session in M4, 13:00-15:00.

Our abstract is below:

One thousand fleas from fifty countries: global genetic structure and morphometrics of the common cat flea (genus Ctenocephalides) reveals phylogeographic patterns and resolves the generic complex.

Andrea Lawrence, Cameron E. Webb and Jan Šlapeta

School of Life and Environmental Sciences (SoLES), Faculty of Veterinary Science, The University of Sydney, Australia and Department of Medical Entomology, The University of Sydney and Pathology West, ICPMR, Westmead, Australia

The common cat flea and its relatives (genus Ctenocephalides) are considered the most successful ectoparasites on earth. The widespread parasitisation of these insects on mammals closely associated with humans (e.g. dogs and cats) represents significant potential for vector borne disease transmission. Fleas of the genus Ctenocephalides represent a unique model to study the effects of modern human migration and geographic and climatic barriers on parasite diversity and diversification. We have amassed a world-wide collection of Ctenocephalides over a period of 7 years, and analysed over 1000 flea samples from ca. 50 countries representing all continents bar Antarctica. Novel integration of morphology, morphometrics and molecular identification and phylogenetics using a combination of four mitochondrial and nuclear DNA markers, reveals phylogeographic patterns and evolutionary relationships of global cat flea populations. These techniques provide resolution of the long disputed Ctenocephalides generic complex, which has not yet been definitively resolved despite its significance in veterinary and public health. Understanding of contemporary population structure inferred from global phylogeographic analysis has implications for parasite and flea-borne disease management. It is hoped that this work will form the authoritative estimation of the origin of the genus Ctenocephalides and the subsequent species evolution and migratory radiation.

Keep an eye on the official conference hashtag [#ICTMM2016] and why not follow Andrea on Twitter for more!

The lead image on this article is modified from Andrea’s paper, “High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers